Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T12:42:12.409Z Has data issue: false hasContentIssue false

Investigations on electronic structure of YMnO3 by electron energy loss spectra and first-principle calculations

Published online by Cambridge University Press:  28 August 2019

S. Wang
Affiliation:
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
J. Cai
Affiliation:
School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
H. D. Xu
Affiliation:
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
H. L. Tao
Affiliation:
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
Y. Cui
Affiliation:
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
Z. H. Zhang
Affiliation:
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
B. Song
Affiliation:
Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China
S. M. Liu
Affiliation:
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
M. He*
Affiliation:
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
*
a)Author to whom correspondence should be addressed. Electronic mail: heming@djtu.edu.cn

Abstract

Crystal structure and electronic structure of YMnO3 were investigated by X-ray diffraction and transmission electron microscopy related techniques. According to the density of states (DOS), the individual interband transitions to energy loss peaks in the low energy loss spectrum were assigned. The hybridization of O 2p with Mn 3d and Y 4d analyzed by the partial DOS was critical to the ferroelectric nature of YMnO3. From the simulation of the energy loss near-edge structure, the fine structure of O K-edge was in good agreement with the experimental spectrum. The valence state of Mn (+3) in YMnO3 was determined by a comparison between experiment and calculations.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babu, J. B., He, M., and Zhang, D. F. (2007). “Enhancement of ferroelectric properties of Na1/2Bi1/2TiO3-BaTiO3 single crystals by Ce dopings,” Appl. Phys. Lett. 90, 102901.Google Scholar
Bi, K., Wang, X. Y., Hao, Y. N., Lei, M., Dong, G. Y., and Zhou, J. (2019). “Wideband slot-coupled dielectric resonator-based filter,” J. Alloys Compd. 785, 12641269.Google Scholar
Cho, D. Y., Kim, J. Y., Park, B. G., Rho, K. J., Park, J. H., Noh, H. J., and Kim, B. J. (2007). “Ferroelectricity driven by Y d0-ness with rehybridization in YMnO3,” Phys. Rev. Lett. 98, 217601.Google Scholar
Cohen, R. E. (1992). “Origin of ferroelectricity in perovskite oxides,” Nature. 358, 136138.Google Scholar
Du, Y. X., Lei, M., Chen, X. L., and Zhang, D. F. (2008). “Influence of 90° domain switching on the physical properties of tetragonal barium titanate single crystals,” Physica B. 403, 30183021.Google Scholar
Egerton, R. F. (2009). “Electron energy-loss spectroscopy in the TEM,” Rep. Prog. Phys. 72, 16502.Google Scholar
Egerton, R. F., Crozier, P. A., and Rice, P. (1987). “Electron energy-loss spectroscopy and chemical change,” Ultramicroscopy. 23, 305312.Google Scholar
Erni, R., and Browning, N. D. (2005). “Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy,” Ultramicroscopy. 104, 176192.Google Scholar
Filippetti, A., and Hill, N. A. (2002). “Coexistence of magnetism and ferroelectricity in perovskites,” Phys. Rev. B. 65, 195120.Google Scholar
Ghosez, P., Michenaud, J.-P., and Gonze, X. (1998). “Dynamical atomic charges: The case of ABO3compounds,” Phys. Rev. B. 58, 6224.Google Scholar
Gibbs, A. S., Knight, K. S., and Lightfoot, P. (2011). “High-temperature phase transitions of hexagonal YMnO3,” Phys. Rev. B. 83, 955.Google Scholar
He, X., Luan, S. Z., Wang, L., Wang, R. Y., Du, P., Xu, Y. Y., Yang, H. J., Wang, Y. G., Huang, K., and Lei, M. (2019). “Facile loading mesoporous Co3O4 on nitrogen doped carbon matrix as an enhanced oxygen electrode catalyst,” Mater. Lett. 244, 7882.Google Scholar
Huang, Z. J., Cao, Y., Sun, Y. Y., Xue, Y. Y., and Chu, C. W. (1997). “Coupling between the ferroelectric and antiferromagnetic orders in YMnO3,” Phys. Rev. B. 56, 2623.Google Scholar
Ikeno, H., and Mizoguchi, T. (2017). “Basics and applications of ELNES calculations,” Microscopy. 66, 305327.Google Scholar
Kim, Y. J., Bhatnagar, A., Pippel, E., Alexe, M., and Hesse, D. (2014). “Microstructure of highly strained BiFeO3 thin films: transmission electron microscopy and electron-energy loss spectroscopy studies,” J. Appl. Phys. 115, 043526.Google Scholar
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y. (2003). “Magnetic control of ferroelectric polarization,” Nature. 426, 5558.Google Scholar
Lima, A. F., and Lalic, M. V. (2013). “Analysis of orbital hybridization in the magnetoelectric YMnO3 crystal from first principles calculations,” IEEE Trans. Magn. 49, 46874690.Google Scholar
Lin, S., Bai, X. P., Wang, H. Y., Wang, H. L., Song, J. N., Huang, K., Wang, C., Wang, N., Li, B., Lei, M., and Wu, H. (2017). “Roll-to-roll production of transparent silver nanofiber network electrode for flexible electrochromic smart windows,” Adv. Mater. 29, 1703238.Google Scholar
Lin, S., Wang, H. Y., Zhang, X. N., Wang, D., Zu, D., Song, J. N., Liu, Z. L., Huang, Y., Huang, K., Tao, N., Li, Z. W., Bai, X. P., Li, B., Lei, M., Yu, Z. F., and Wu, H. (2019a). “Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows,” Nano Energy. 62, 111116.Google Scholar
Lin, S., Wang, H. Y., Wu, F., Wang, Q. M., Bai, X. P., Zu, D., Song, J. N., Wang, D., Liu, Z. L., Li, Z. W., Tao, N., Huang, K., Lei, M., Li, B., and Wu, H. (2019b). “Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding,” Flexible Electron. 3, 6.Google Scholar
Liu, S. H., Huang, J. C. A., and Qi, X. D. (2011). “Structural transformation and charge transfer induced ferroelectricity and magnetism in annealed YMnO3,” AIP Adv. 1, 032173.Google Scholar
Malo, S., and Maignan, A. (2012). “Co-substitution at the Mn-site in YMnO3: structural stability and physical properties,” Mater. Res. Bull. 47, 974979.Google Scholar
Nishida, S. J., Kobayashi, S. S., Kumamoto, A., Ikeno, H., Mizoguchi, T., Tanaka, I., Ikuhara, Y. C., and Yamamoto, T. (2013). “Effect of local coordination of Mn on Mn–L2,3 edge electron energy loss spectrum,” J. Appl. Phys. 114, 054906.Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868.Google Scholar
Prikockyte, A., Bilc, D., Hermet, P., Dubourdieu, C., and Ghosez, P. (2011). “First-principle calculations of the structural and dynamical properties of ferroelectric YMnO3,” Phys. Rev. B. 84, 214301.Google Scholar
Quhe, R. G., Liu, J. C., Wu, J. X., Yang, J., Wang, Y. Y., Li, Q. H., Li, T. R., Yang, J. B., Peng, H. L., Lei, M., and Lu, J. (2019). “High-performance Sub-10 nm monolayer Bi2O2Se transistors,” Nanoscale. 11, 532540.Google Scholar
Rafferty, B., Pennycook, S., and Brown, L. M. (2000). “Zero loss peak deconvolution for bandgap EEL spectra,” J. Electron. Microsc. 49, 517524.Google Scholar
Salazar-Kuri, U., Mendoza, M. E., and Siqueiros, J. M. (2012). “Phase transition in multiferroic YMnO3 and its solid solution YMn(0.93)Fe(0.07)O3,” Physica B. 407, 35513554.Google Scholar
Schmid, H. K., and Mader, W. (2006). “Oxidation states of Mn and Fe in various compound oxide systems,” Micron. 37, 426432.Google Scholar
Sotero, W., Lima, A. F., and Lalic, M. V. (2015). “Analysis of the Mn–O and Y–O bonds in paraelectric and ferroelectric phase of magnetoelectric YMnO3 from the first principles calculations,” J. Alloys Compd. 649, 285290.Google Scholar
Varela, M., Oxley, M. P., Luo, W., Tao, J., Watanabe, M., Lupini, A. R., Pantelides, S. T., and Pennycook, S. J. (2009). “Atomic-resolution imaging of oxidation states in manganites,” Phys. Rev. B. 79, 085117.Google Scholar
Wang, H., Liu, R. P., Li, Y. T., Lu, X. J., Wang, Q., Zhao, S. Q., Yuan, K. J., Cui, Z. M., Li, X., Xin, S., Zhang, R., Lei, M., and Lin, Z. Q. (2018). “Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction,” Joule. 2, 337348.Google Scholar
Wang, S., Xu, H. D., Cai, J., Wang, Y. P., Tao, H. L., Cui, Y., He, M., Song, B., and Zhang, Z. H. (2019a). “Electronic structure of multiferroic BiFeO3: electron energy-loss spectroscopy and first-principles study,” Micron. 120, 4347.Google Scholar
Wang, X. T., Cui, Y., Li, T., Lei, M., Li, J. B., and Wei, Z. M. (2019b). “Recent advances in the functional 2D photonic and optoelectronic devices,” Adv. Opt. Mater. 7, 1801274.Google Scholar
Zhang, Z. H., Qi, X. Y., Jian, J. K., and Duan, X. F. (2006). “Investigation on optical properties of ZnO nanowires by electron energy-loss spectroscopy,” Micron. 37, 229233.Google Scholar
Zhang, Z. H., Yang, J. J., He, M., Wang, X. F., and Li, Q. (2008). “Electronic structure of a potential optical crystal YBa3B9O18: experiment and theory,” Appl. Phys. Lett. 92, 171903.Google Scholar
Zhang, Q. H., Guo, S. D., Ge, B. H., Chen, P., Yao, Y., Wang, L. J., and Gu, L. (2014). “A new ferroelectric phase of YMnO3 induced by oxygen-vacancy ordering,” J. Am. Ceram. Soc. 97, 12641268.Google Scholar