Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T07:50:50.838Z Has data issue: false hasContentIssue false

A method for routine comparison of XRPD measurements

Published online by Cambridge University Press:  05 March 2012

Giovanni Berti
Affiliation:
Department of Earth Sciences, University of Pisa, Via S. Maria 53, 56126 Pisa, Italy

Abstract

This paper outlines some features of diffraction instrumental monitoring (DIM), a method which can prove helpful to evaluate systematic effects from diffraction measurements and facilitate the comparison of results. The work provides some consideration of the significance of the information contained in diffraction patterns and the ability of DIM methods to yield the effective values of instrumental parameters obtained under working conditions.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bevington, P. R. (1994). Data Reduction and Errors Analysis for the Physical Science (McGraw Hill, British Columbia).Google Scholar
Blanton, T. N., Schreiner, W. N., Dann, J. N., Hamill, G. P., and Hamilton, R. F. (1993). “JCPDS-International Centre for Diffraction Data statistical process control method development,” Powder Diffr. PODIE2 8, 229235. pdj, PODIE2 Google Scholar
Berti, G. (1993). “Variance and optimization in X-ray powder diffraction analysis,” Powder Diffr. PODIE2 8, 8795. pdj, PODIE2 CrossRefGoogle Scholar
Berti, G., Bertoli, M., De Palo, S., and Menichini, R. (1994). “Filtrazione per via umida di polveri ad uso diffrattometrico; Laboratorio 2000,” April 1994 (Morgan Editore, Milano), pp. 52–59.Google Scholar
Berti, G., Danzi, M., Marzoni Fecia Di Cossato, Y., and Odierna, M. (1991). “Wet micro-mesh sieving for X-ray powder diffractometric purposes: Performance, efficiency and grain dispersion of the screening,” Per. Mineral. ZZZZZZ 60, 2128.Google Scholar
Berti, G., Giubbilini, S., and Tognoni, E. (1995). “DISVAR93: A software package for determining systematic effects in X-ray powder diffractometry,” Powder Diffr. PODIE2 10, 104111. pdj, PODIE2 CrossRefGoogle Scholar
Colombi, A. (1998). “Studio di dati diffrattometrici provenienti da un progetto di Round Robin e da attivita’ di intercalibrazione di strumenti. Thesis of Degree in Geology,” Dept. of Earth Science, Faculty of Science, University of Pisa.Google Scholar
Jenkins, R. (1989). Instruments, Rev. of Mineralogy: Modern Powder Diffraction, edited by D. L. Bish & J. E. Post (Min. Soc. of Am. P. H. Ribbe Ed), pp. 19–45.Google Scholar
Larson, A. C., and Von Dreele, R. B. (1986). “GSAS, Generalized Structure Analysis System,” Manual LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Le Bail, A., Duroy, H., and Forquet, J. L. (1988). “Ab initio structure determination of LiSbWo6 by X-ray powder diffraction,” Mater. Res. Bull. MRBUAC 23, 447452. mrb, MRBUAC CrossRefGoogle Scholar
Lutterotti, L., Maistrelli, P., Scardi, P., Artioli, G., Masciocchi, N., Bellotto, M., Berti, G., Cappuccio, G., Chiari, G., Massarotti, V., and Zanazzi, P. (1993). “XRPD of KCl on different diffractometers: Lattice parameters and structure refinement,” Proc. 23th Congress of AIC (AIC, Venice, 19-22/10/1993), pp. 104–105, and Plinius 10.33-34.Google Scholar
Masciocchi, N., and Artioli, G. (1996). “Lattice parameters determination from powder diffraction data: Results from a round robin project,” Powder Diffr. PODIE2 11, 252258. pdj, PODIE2 CrossRefGoogle Scholar
Parrish, W., and Mack, M. (1963). “Data for X-ray analysis—Charts for the solution of Bragg’s equation,” Philips Technical Library.Google Scholar
Tognoni, E. (1992). “Studio delle caratteristiche microcristalline e del comportamento magnetico di in campione di magnetite naturale,” Thesis of degree in Physics, Dept. of Physics, University of Pisa (October 1992).Google Scholar
Toraya, H., and Katamura, M. (1990). “Simultaneous peak-shift correction in the least-squares determination of unit-cell parameters of a sample with standard reference material,” J. Appl. Crystallogr. JACGAR 23, 282285. acr, JACGAR Google Scholar
Wilson, A. J. C. (1963). “The mathematical theory of X-ray powder diffraction,” Philips Technical Library.Google Scholar