Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T14:11:37.572Z Has data issue: false hasContentIssue false

Molecular reorientation in a dehydration process of an organic polar salt of 2,4-diaminotoluene/L(+)-tartaric acid

Published online by Cambridge University Press:  23 February 2017

Weicai Ju
Affiliation:
College of Materials Science and Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, China
Simin Qiu
Affiliation:
College of Materials Science and Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, China
Yaqiu Tao
Affiliation:
College of Materials Science and Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, China
Xiaodong Shen
Affiliation:
College of Materials Science and Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, China
Zhigang Pan*
Affiliation:
College of Materials Science and Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, China
*
a)Author to whom correspondence should be addressed. Electronic mail: panzhigang@njtech.edu.cn

Abstract

An organic polar hydrate was obtained through cocrystallization of 2,4-diaminotoluene (2,4-DAT) and L(+)-tartaric acid (TA) from ethanol. Dehydration behavior of the obtained hydrate was investigated using variable temperature powder X-ray diffraction (PXRD) and thermal analysis. Proton transfer from L(+)-TA to 2,4-DAT in both hydrate and dehydrated form was revealed via Fourier transform infrared spectroscopy. The crystal structures of both forms were determined using PXRD techniques. The similarities and differences between two crystal structures were analyzed and the role of water in the hydrate crystal structure was demonstrated.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aakeroy, C. B., Cooke, T. I., and Nieuwenhuyzen, M. (1996). “The crystal structure of the molecular cocrystal L-malic acid L-tartaric acid (1/1),” Supramol. Chem. 7, 153156.CrossRefGoogle Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., and Watkin, D. J. (2003). “CRYSTALS version 12: software for guided crystal structure analysis,” J. Appl. Crystallogr. 36, 14871487.CrossRefGoogle Scholar
Chen, S. and Zeng, X. C. (2014). “Design of ferroelectric organic molecular crystals with ultrahigh polarization,” J. Am. Chem. Soc. 136, 64286436.CrossRefGoogle ScholarPubMed
Collet, E., Lemee-Cailleau, M. H., Buron-Le Cointe, M., Cailleau, H., Wulff, M., Luty, T., Koshihara, S. Y., Meyer, M., Toupet, L., Rabiller, P., and Techert, S. (2003). “Laser-induced ferroelectric structural order in an organic charge-transfer crystal,” Science 300, 612615.CrossRefGoogle Scholar
Ding, X. H., Li, Y. H., Wang, S., and Huang, W. (2014). “Proton-transfer supramolecular salts of D-/L-tartaric acid and 1-(2-pyrimidyl)piperazine,” J. Mol. Struct. 1062, 6167.CrossRefGoogle Scholar
Engel, G. E., Wilke, S., Konig, O., Harris, K. D. M., and Leusen, F. J. J. (1999). “PowderSolve – a complete package for crystal structure solution from powder diffraction patterns,” J. Appl. Crystallogr. 32, 11691179.CrossRefGoogle Scholar
Fu, D. W., Zhang, W., Cai, H. L., Ge, J. Z., Zhang, Y., and Xiong, R. G. (2011). “Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization,” Adv. Mater. 23, 56585662.CrossRefGoogle ScholarPubMed
Fu, D. W., Cai, H. L., Liu, Y. M., Ye, Q., Zhang, W., Zhang, Y., Chen, X. Y., Giovannetti, G., Capone, M., Li, J. Y., and Xiong, R. G. (2013). “Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal,” Science 339, 425428.CrossRefGoogle ScholarPubMed
Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N., and Tokura, Y. (2005). “Ferroelectricity near room temperature in co-crystals of nonpolar organic molecules,” Nat. Mater. 4, 163166.CrossRefGoogle ScholarPubMed
Hu, Z. J., Tian, M. W., Nysten, B., and Jonas, A. M. (2009). “Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories,” Nat. Mater. 8, 6267.CrossRefGoogle ScholarPubMed
Katrusiak, A. and Szafranski, M. (1999). “Ferroelectricity in NH center dot center dot center dot N hydrogen bonded crystals,” Phys. Rev. Lett. 82, 576579.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86–748) (Los Alamos National Laboratory, Los Alamos, New Mexico).Google Scholar
Leiserowitz, L. (1976). “Molecular packing modes – carboxylic-acids,” Acta Crystallogr. B, Struct. Sci. 32, 775802.CrossRefGoogle Scholar
Naber, R. C. G., Tanase, C., Blom, P. W. M., Gelinck, G. H., Marsman, A. W., Touwslager, F. J., Setayesh, S., and De Leeuw, D. M. (2005). “High-performance solution-processed polymer ferroelectric field-effect transistors,” Nat. Mater. 4, 243248.CrossRefGoogle Scholar
Neumann, M. A. (2003). “X-Cell: a novel indexing algorithm for routine tasks and difficult cases,” J. Appl. Crystallogr. 36, 356365.CrossRefGoogle Scholar
Smith, G., Wermuth, U. D., and White, J. M. (2006). “Proton-transfer and non-transfer in compounds of quinoline and quinaldic acid with L-tartaric acid,” Acta Crystallogr. C, Cryst. Struct. Commun. 62, O694O698.CrossRefGoogle ScholarPubMed
Szafranski, M., Katrusiak, A., and McIntyre, G. J. (2002). “Ferroelectric order of parallel bistable hydrogen bonds,” Phys. Rev. Lett. 89.CrossRefGoogle ScholarPubMed
Timofeeva, T. V., Kuhn, G. H., Nesterov, V. V., Nesterov, V. N., Frazier, D. O., Penn, B. G., and Antipin, M. Y. (2003). “Cocrystal of 1,1-dicyano-2-(4-hydroxyphenyl)-ethene with L-proline and induced conformational polymorphism of 1,1-dicyano-2-(4-hydroxy-3-methoxyphenyl)-ethene,” Cryst. Growth Des. 3, 383391.CrossRefGoogle Scholar
Toby, B. H. (2001). “ EXPGUI, a graphical user interface for GSAS ,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
Wen, Z., Li, C., Wu, D., Li, A. D., and Ming, N. B. (2013). “Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions,” Nat. Mater. 12, 617621.CrossRefGoogle ScholarPubMed
Xu, Y., Jiang, L. L., and Mei, X. F. (2014). “Supramolecular structures and physicochemical properties of norfloxacin salts,” Acta Crystallogr. B, Struct. Sci. Cryst. Eng. Mater. 70, 750760.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ju supplementary material

Ju supplementary material 1

Download Ju supplementary material(File)
File 1.1 MB