Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T04:47:30.320Z Has data issue: false hasContentIssue false

New X-ray powder diffraction data for lithium tetrahydroxoborate LiB(OH)4

Published online by Cambridge University Press:  10 January 2013

M. Touboul
Affiliation:
Université de Picardie Jules Verne, Laboratoire de Réactivité et de Chimie des Solides, URA CNRS 1211, 33 rue Saint-Leu, 80039 Amiens cedex, France
E. Bétourné
Affiliation:
Université de Picardie Jules Verne, Laboratoire de Réactivité et de Chimie des Solides, URA CNRS 1211, 33 rue Saint-Leu, 80039 Amiens cedex, France
B. Gérand
Affiliation:
Université de Picardie Jules Verne, Laboratoire de Réactivité et de Chimie des Solides, URA CNRS 1211, 33 rue Saint-Leu, 80039 Amiens cedex, France

Abstract

The X-ray powder diffraction pattern of hydrated lithium monoborate LiB(OH)4, sometimes formulated LiBO2·2H2O, has been obtained. Refinements of indexed reflections yielded the following parameters: a = 9.1732(7)Å, b = 7.9622(6)Å, c = 8.5354(8)Å, space group Pbca, Z = 8, Dx = 1.827, Dm = 1.83 g/cm3. The Smith–Snyder figure-of-merit is F30 = 101(0.007,44).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benhassaïne, A. (1973). Thesis, Université Paris VI.Google Scholar
Bouaziz, R. (1962). Bull. Soc. Chim. (France) 2, 14511454.Google Scholar
Byrappa, K., Shekar, K. V. K., and Gali, S. (1992). Cryst. Res. Technol. 27, 767772.CrossRefGoogle Scholar
De Wolff, P. M. (1968). J. Appl. Crystallogr. 1, 108113.Google Scholar
Driscoll, C. M. H., Fisher, E. S., Furett, A. C., Padovani, R., Richards, D. J., and Wall, B. F. (1984). Radiat. Prot. Dosim. 6, 305308.CrossRefGoogle Scholar
Gode, H., and Skuja, B. (1991). Latvijas Kimijas Zurnals 1, 1315.Google Scholar
Höhne, E. (1966). Z. Anorg. Allg. Chem. 342, 188194.Google Scholar
Lehmann, H. A., and Tiess, D. (1959). Chem. Techn. 11, 260.Google Scholar
Louër, D., Louër, M., and Touboul, M. (1992). J. Appl. Crystallogr. 25, 617623.CrossRefGoogle Scholar
Malmros, G., and Werner, P. E. (1973). Acta Chem. Scand. 27, 493.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS80, A FORTRAN program for Crystallographic Data Evaluation-Nat. Bur. Stand. (U.S.) Tech. Note 1141.Google Scholar
Nakamura, S., and Hayashi, H. (1975). Yogyo Kyokai Shi 83, 3845.Google Scholar
Ozols, J., Zviedre, I., and Ievins, A. F. (1966). Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 4, 506.Google Scholar
Reburn, W. T., and Gale, W. A. (1955). J. Phys. Chem. 59, 1924.CrossRefGoogle Scholar
Sastry, B. S. R., and Hummel, F. A. (1958). J. Am. Ceram. Soc. 41, 717.CrossRefGoogle Scholar
Smith, G. J., and Snyder, R. L. (1979). J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Snyder, R. L. (1983). Adv. X-Ray Anal. 26, 19.Google Scholar
Touboul, M., and Bétourné, E. (1993a). Powder Diffr. 8, 162163.CrossRefGoogle Scholar
Touboul, M., and Bétourné, E., (1993b). Solid State Ionics 63–65, 340345.CrossRefGoogle Scholar
Whatmore, R. W., Shorrock, N. M., Okara, C., Ainger, F. W., and Young, I. M. (1981). Electron. Lett. 17, 1112.CrossRefGoogle Scholar
Yvon, K., Jeitschko, W., and Parthé, E. (1977). J. Appl. Cryst. 10, 73.CrossRefGoogle Scholar
Zviedre, I., Ozols, J. K., and Ievins, A. F. (1974). Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1, 34.Google Scholar