Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T16:29:17.421Z Has data issue: false hasContentIssue false

Obtaining optimal structural data from X-ray powder diffraction using the Rietveld method

Published online by Cambridge University Press:  27 August 2014

Shanke Liu*
Affiliation:
Division of Solid Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
He Li
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Jianming Liu
Affiliation:
Division of Solid Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
*
a)Author to whom correspondence should be addressed. Electronic mail: liushanke@mail.iggcas.ac.cn

Abstract

Diffraction data of calcite were collected using a conventional Bragg–Brentano diffractometer, which is a convenient, low-cost, and highly popular in-house instrument, and its crystal structure was refined by the Rietveld method. This paper shows how one treats preferred orientation and how different refinement strategies affect the accuracy of the result.

Type
Crystallography Education
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antao, S. M., Hassan, I., Mulder, W. H., Lee, P. L., and Toby, B. H. (2009). “ In situ study of the R-3c → R-3m orientational disorder in calcite,” Phys. Chem. Miner. 36, 159169.Google Scholar
Balic-Zunic, T., Katerinopoulou, A., and Edsberg, A. (2011). “Application of powder X-ray diffraction and the Rietveld method to the analysis of oxidation processes and products in sulphidic mine tailings,” Neues Jahrb. Miner. Abh. 188(1), 3147.Google Scholar
Ballirano, P. (2011). “Laboratory parallel-beam transmission X-ray powder diffraction investigation of the thermal behavior of calcite: comparison with X-ray single-crystal and synchrotron powder diffraction data,” Period Miner. 80(1), 123134.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier-Villars, Paris), pp. 18111863.Google Scholar
Brown, I. D. (2002). “The chemical bond in inorganic chemistry: the bond valence model,” in IUCrMonographs on Crystallography, 12 (Oxford University Press, New York, NY).Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure databaseActa Crystallogr. B41, 244247.Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the Law of Bravais,” Am. Miner. 22, 463467.Google Scholar
Effenberger, H., Mereiter, K., and Zemann, J. (1981). “Crystal structure refinements of magnesite calcite, rhodochrosite siderite, smithonite and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates,” Z. Kristallogr. 156, 233243.Google Scholar
Friedel, G. (1907). “Studies on the law of Bravais,” Bull. Soc. Franc. Miner. 30, 326455.Google Scholar
Hill, R. J. (1992). “Rietveld refinement round robin. I. Analysis of standard X-ray and neutron data for PbSO4 ,” J. Appl. Crystallogr. 25, 589610.Google Scholar
Hill, R. J. and Cranswick, L. M. D. (1994).“International union of crystallography commission on powder diffraction Rietveld refinement round robin. II. Analysis of monoclinic ZrO2 ,” J. Appl. Crystallogr. 27, 802844.Google Scholar
Kaduk, J. A. (2009). “A Rietveld Tutorial – Mullite,” Powder Diffr. 24(4), 351361.Google Scholar
Lager, G. A., Jorgensen, J. D., and Rotella, F. J. (1982). “Crystal structure and thermal expansion of alpha-quartz SiO2 at low temperatures,” J. Appl. Phys. 53, 67516756.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) Los Alamos National Laboratory Report. LAUR, pp. 86748.Google Scholar
Markgraf, S. A. and Reeder, R. J. (1985). “High-temperature structure refinements of calcite and magnesiteAm. Miner. 70, 590600.Google Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr. 32, 3650.Google Scholar
Nowell, H., Attfield, J. P., and Coleb, J. C. (2002). “The use of restraints in Rietveld refinement of molecular compounds; a case study using the crystal structure determination of tryptamine free base,” Acta Crystallogr. B58, 835840.Google Scholar
Reeder, R. J. and Wenk, H. R. (1983). “Structure refinements of some thermally disordered dolomites,” Am. Miner. 68, 769777.Google Scholar
Rietveld, H. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. 22, 151152.Google Scholar
Rietveld, H. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Sitepu, H. (2002). “Assessment of preferred orientation with neutron powder diffraction data,” J. Appl. Crystallogr. 35, 274277.Google Scholar
Sitepu, H., O'Connor, B. H., and Li, D. (2005). “Comparative evaluation of the March and generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite and calcite powders,” J. Appl. Crystallogr. 38, 158167.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Toby, B. H. (2006). “R factors in Rietveld analysis: how good is good enough?,” Powder Diffr. 21(1), 6770.Google Scholar
Walker, J. R. and Bish, D. L. (1992). “Application of Rietveld refinement techniques to a disordered IIb Mg-Chamosite,” Clays Clay Miner. 40(3),319322.Google Scholar
Wenk, H. R. and Houtte, P. V. (2004). “Texture and anisotropy,” Rep. Prog. Phys. 67, 13671428.Google Scholar
Young, R. A. (1993). (Editor). The Rietveld Method (Oxford University Press, New York, NY).Google Scholar
Zucchini, A., Comodi, P., Katerinopoulou, A., Balic-Zunic, T., McCammon, C., and Frondini, F. (2012). “Order–disorder–reorder process in thermally treated dolomite samples: a combined powder and single-crystal X-ray diffraction study,” Phys. Chem. Miner. 39, 319328.Google Scholar
Supplementary material: File

Liu Supplementary Material

Supplementary Material

Download Liu Supplementary Material(File)
File 18.2 KB