No CrossRef data available.
Article contents
Powder diffraction data of new bismuth yttrium gadolinium oxide, Bi1.8Y0.1Gd0.1O3
Published online by Cambridge University Press: 29 February 2012
Abstract
New bismuth yttrium gadolinium oxide, Bi1.8Y0.1Gd0.1O3, synthesized from a stoichiometric mixture of Bi2O3, Y2O3, and Gd2O3, was characterized by X-ray powder diffraction. The compound was determined to be tetragonal, with space group P421c (114), unit-cell parameters of a=7.793 08(29) and c=5.665 71(40) Å, and the number of formulas per unit cell Z=4. Bi1.8Y0.1Gd0.1O3 is isostructural with β-Bi2O3.
- Type
- New Diffraction Data
- Information
- Copyright
- Copyright © Cambridge University Press 2010
References
Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987–993 .10.1107/S0021889891006441Google Scholar
Chen, X. L. and Eysel, W. (1996). “The stabilization of β-Bi2O3 by CeO2,” J. Solid State Chem. JSSCBI 127, 128.10.1006/jssc.1996.0367CrossRefGoogle Scholar
De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108–113 .10.1107/S002188986800508XCrossRefGoogle Scholar
Fung, K. Z., Chen, J., and Virkar, A. V. (1993). “Effect of aliovalent dopants on the kinetics of phase transformation and ordering in RE2O3-Bi2O3 (RE=Yb, Er, Y, or Dy) solid solutions,” J. Am. Ceram. Soc. JACTAW 76, 2403–2418 .10.1111/j.1151-2916.1993.tb03961.xCrossRefGoogle Scholar
Fung, K. Z. and Virkar, A. V. (1991). “Phase stability, phase transformation kinetics, and conductivity of Y2O3-Bi2O3 solid electrolytes containing aliovalent dopants,” J. Am. Ceram. Soc. JACTAW 74, 1970–1980 .10.1111/j.1151-2916.1991.tb07817.xGoogle Scholar
Harwig, H. A. and Gerards, A. G. (1978). “Electrical properties of the, β γ and δ phases of bismuth sesquioxide,” J. Solid State Chem. JSSCBI 26, 265–274 .10.1016/0022-4596(78)90161-5CrossRefGoogle Scholar
Medvedeva, N. I., Zhukov, V. P., Gubanov, V. A., Novikov, D. L., and Klein, B. M. (1996). “Electronic structure and chemical bonding in δ-Bi2O3,” J. Phys. Chem. Solids JPCSAW 57, 1243–1250 .10.1016/0022-3697(95)00311-8Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 60–65 .10.1107/S002188987901178XGoogle Scholar
Su, P., Virkar, A. V., Hubbard, C. R., Cavin, O. B., and Porter, W. D. (1993). “Cubic to tetragonal displacive transformation in Gd2O3-Bi2O3 ceramics,” J. Am. Ceram. Soc. JACTAW 76, 2513–2520 .10.1111/j.1151-2916.1993.tb03974.xGoogle Scholar
Turkoglu, O., Soylak, M., and Belenli, I. (2002). “Synthesis and characterization of β type solid solution in the binary system of Bi2O3-Eu2O3,” Bull. Mater. Sci. BUMSDW 25, 583–588.10.1007/BF02707889CrossRefGoogle Scholar
Wachsman, E. D., Boyapati, S., Kaufman, M. J., and Jiang, N. (2000). “Modeling of ordered structures of phase-stabilized cubic bismuth oxides,” J. Am. Ceram. Soc. JACTAW 83, 1964–1968.CrossRefGoogle Scholar
Werner, P. E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semiexhaustive trial and error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367–370 .10.1107/S0021889885010512Google Scholar