Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T15:07:23.401Z Has data issue: false hasContentIssue false

Powder diffraction study of Pd2HgSe3

Published online by Cambridge University Press:  06 November 2017

F. Laufek*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Praha 5, Czech Republic
A. Vymazalová
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Praha 5, Czech Republic
M. Drábek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Praha 5, Czech Republic
*
a)Author to whom correspondence should be addressed. Electronic mail: frantisek.laufek@geology.cz

Abstract

The Pd2HgSe3 phase was synthetized from individual elements by the silica glass tube technique and its crystal structure has been refined by the Rietveld method. The Pd2HgSe3 phase crystalizes in P$\bar 3$m1 space group with the unit-cell parameters a = 7.3096(2) Å, c = 5.2829(1) Å, V = 244.45(1) Å3, Dc = 8.84 g/cm3, and Z = 2. In its layered crystal structure, the [PdSe6] octahedra share opposing Se–Se edges with adjacent [PdSe4] squares forming layers parallel with the (001) plane. The layers show AA type stacking along the c-axis. Hg atoms occupy the anti-cubooctahedral voids between two consecutive layers. Pd2HgSe3 is isostructural with Pt2HgSe3 and Pt4Tl2X6 (X = S, Se, or Te) phases. The structure can be viewed as a 2a.2a.c superstructure of PtSe2.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bérar, J. F. and Baldinozzi, G. (1993). “Modeling of line-shape asymmetry in powder diffraction,” J. Appl. Crystallogr. 26, 128129.CrossRefGoogle Scholar
Bronger, W. and Bonsmann, B. (1995). “Ternare Thalliumplatin- und Thaliumpalladiumchalkogenide Tl2M4S6. Synthesen, Kristallstruktur und Bindungsverhältnisse,” Z. Anorg. Allg. Chem. 621, 20832088.CrossRefGoogle Scholar
Bruker AXS (2014) Topas 5 (Karslruhe, Germany).Google Scholar
Drábek, M., Vymazalová, A., and Laufek, F. (2014). “The system Hg–Pd–Se at 400 °C: phase relations involving tischendorfite and other ternary phases,” Can. Mineral. 52, 763768.CrossRefGoogle Scholar
Earley, J. W. (1950). “Description and syntheses of the selenide minerals,” Am. Mineral. 35, 337364.Google Scholar
Furuseth, S., Selte, K., and Kjekshus, A. (1965). “Redetermined crystal structures of NiTe2, PdTe2, PtS2, PtSe2 ,” Acta Chem. Scand. 19, 257258.CrossRefGoogle Scholar
Kroumova, E., Perez-Mato, J. M., and Aroyo, M. I. (1998). “WYCKSPLIT: a computer program for determination of the relations of Wyckoff positions for a group subgroup pair,” J. Appl. Crystallogr. 31, 646.CrossRefGoogle Scholar
Laufek, F., Vymazalová, A., Drábek, M., and Drahokoupil, J. (2011). “Crystallographic study of Pd(Pt)-Hg-Se ternary systems,” Mater. Struct. 18(2), 124125.Google Scholar
Laufek, F., Vymazalová, A., Drábek, M., Navrátil, J., Plecháček, T., and Drahokoupil, J. (2012). “Crystal structure and transport properties of Pd5HgSe,” Solid State Sci. 14(10), 14761479.CrossRefGoogle Scholar
Laufek, F., Vymazalová, A., Drábek, M., Navrátil, J., Drahokoupil, J. (2014). “Synthesis and crystal structure of tischendorfite Pd8Hg3Se9 ,” Eur. J. Mineral. 25, 157162.CrossRefGoogle Scholar
Laufek, F., Vymazalová, A., Drábek, M., Dušek, M., Navrátil, J., Černošková, E. (2016). “The crystal structure of Pd3HgTe3, the synthetic analogue of temagamite,” Eur. J. Mineral. 28, 825834.CrossRefGoogle Scholar
Louër, D. and Boultif, A. (2007). “Powder pattern indexing and the dichotomy algorithm,” Z. Kristallogr. 26, 191196.CrossRefGoogle Scholar
Paar, W. H., Roberts, A. C., Criddle, A. J., and Topa, D. (1998). “A new mineral, chrisstanleyite, Ag2Pd3Se4, from Hope's nose, Torquay, Devon, England,” Mineral. Mag. 62, 257264.CrossRefGoogle Scholar
Pauling, L. (1929). “The principles determining the structure of complex ionic crystal,” J. Am. Chem. Soc. 51, 10101026.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FullProf: A program for Rietveld refinement and pattern matching analysis,” in Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Tolouse, France, p. 127.Google Scholar
Stanley, C. J., Criddle, A. J., Förster, H. J., and Roberts, A. C. (2002). “Tischendorfite, Pd8Hg3Se9, a new mineral species from Tilkerode, Harz Mountains, Germany,” Can. Mineral. 40, 739745.CrossRefGoogle Scholar
Terada, K. and Cagle, F. W. Jr. (1960). “The crystal structure of potarite (Pd Hg) with some comments on allopalladium,” Am. Mineral., 45, 10931097.Google Scholar
Vymazalová, A., Laufek, F., Drábek, M., Cabral, A. R., Haloda, J., Sidorinová, T., Lehmnn, B., Galbiatti, H. F., and Drahokoupil, J. (2012). “Jacutingaite, Pt2HgSe3, a new platinum-group mineral from the Cauê iron-ore deposit, Itabira District, Minas Gerais, Brazil,” Can. Mineral. 50(2), 431440.CrossRefGoogle Scholar
Supplementary material: File

Laufek et al supplementary material

Laufek et al supplementary material 1

Download Laufek et al supplementary material(File)
File 215.1 KB