Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-11T04:51:03.897Z Has data issue: false hasContentIssue false

Powder X-ray diffraction data for potassium silver thiocyanate, AgK(SCN)2 and dipotassium silver thiocyanate, AgK2(SCN)3

Published online by Cambridge University Press:  05 March 2012

Minna Güneş*
Affiliation:
Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
Manu Lahtinen
Affiliation:
Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
Jussi Valkonen
Affiliation:
Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
*
a)Author to whom correspondence should be addressed. Electronic mail: mmlaurik@cc.jyu.fi

Abstract

Previously unpublished powder X-ray diffraction data for potassium silver thiocyanate, AgK(SCN)2 and dipotassium silver thiocyanate, AgK2(SCN)3 are presented. F30 values for AgK(SCN)2 and AgK2(SCN)3 are 80(0.0075, 50) and 53(0.0089, 63), respectively. The Rietveld refinement of the patterns is also performed. For AgK(SCN)2Rp=6.98, Rwp=11.84, and RBragg=2.9. For AgK2(SCN)3Rp=7.22, Rwp=10.79, and RBragg=5.0.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohatý, L., and Fröhlich, R. (1992). “Crystal growth, crystal structure, optical, electro-optic and electrostrictive properties of the complex silver thiocyanates Cs3Sr[Ag2(SCN)7] and Cs3Ba[Ag2(SCN)7],Z. Kristallogr. ZEKRDZ 198, 3339. zek, ZEKRDZ CrossRefGoogle Scholar
Hunter, B. A., and Howard, C. J. (2000). “LHPM-Rietica, A computer program for Rietveld analysis of X-ray and neutron powder diffraction patterns,” version 1.6.7, Australian Nuclear Science and Technology Organization, Australia.Google Scholar
Kraus, W., and Nolze, G. (1999). “PowderCell for Windows,” version 2.3, Federal Institute for Materials Research and Testing, Berlin, Germany.Google Scholar
Krautscheid, H., and Gerber, S. (2001). “Potassium thiocyanate argentates: K3[Ag(SCN)4], K4[Ag2(SCN)6] and K[Ag(SCN)2],Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE C57, 781783. acg, ACSCEE CrossRefGoogle Scholar
Microcal Software Inc. (19911997). “Microcal™Origin™,” version 5.0, Northampton, USA.Google Scholar
Ondrus, P., Skala, R, and Bowen, K. (19992000). “Bede ZDS search/match for Windows,” version 4.21, Prague, Czech Republic.Google Scholar
Petschick, R. (2000). “MacDiff, A programme for analysis and display of X-ray powder diffractogrammes on Apple Macintosh Platforms,” version 4.2, University of Frankfurt am Main, Germany.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. acr, JACGAR CrossRefGoogle Scholar
Valkonen, J., and Güneş, M. (2001). “Potassium silver thiocyanate,” Acta Crystallogr. ACSEBH E57, i52i54.Google Scholar
Wells, H. L. (1902). “On some double and triple thiocyanates,” Am. Chem. J. ACJOAZ 28, 245284.Google Scholar
Werner, P. E. (1969). “A Fortran program for least-squares refinement,” version 921204, Arkiv för Kemi ARKEAD 31, 513516. arz, ARKEAD Google Scholar