Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T20:05:26.028Z Has data issue: false hasContentIssue false

Preparation and characterization of La1.8Sr0.2CuO4/La1.9Sr0.1CuO4 superconducting bilayers

Published online by Cambridge University Press:  07 October 2013

Y. Zhang
Affiliation:
Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Y.H. An
Affiliation:
Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Y. Xing
Affiliation:
Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
D.Y. Dong
Affiliation:
Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
S.L. Wang
Affiliation:
Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
J.Q. Shen
Affiliation:
Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
P.G. Li*
Affiliation:
Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
W.H. Tang
Affiliation:
State Key Laboratory of Information Photonics and Optical Communication, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
*
a)Author to whom correspondence should be addressed. Electronic mail: pgli@zstu.edu.cn

Abstract

The c-oriented La1.8Sr0.2CuO4 and La1.9Sr0.1CuO4 bilayer films were deposited on (001) SrTiO3 single-crystal substrates by using the pulsed laser deposition technique. The effects of deposition parameters on the quality of thin films were investigated. The crystal structures and surface morphologies were characterized by means of XRD and SEM, and the results showed that an as-prepared film deposited with the optimized parameters has high quality. Then La1.8Sr0.2CuO4/La1.9Sr0.1CuO4 bilayers structure was prepared using the optimized parameters for each corresponding layer, and the electrical transport properties were measured. Interesting rectifying properties were observed at both room and low temperatures, and the rectifying ratio at low temperature was found to be much higher than that at room temperature.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biscaras, J., Bergeal, N., Kushwaha, A., Wolf, T., Rastogi, A., Budhani, R. C., and Lesueur, J. (2010). “Two-dimensional superconductivity at a Mott-Insulator/Band-Insulator interface: LaTiO3/SrTiO3,” Nat. Commun. 1, 15.CrossRefGoogle Scholar
Bollinger, A. T., Dubuis, G., Yoon, J., Pavuna, D., Misewich, J., and Božović, I. (2011). “Superconductor–insulator transition in La2−x SrxCuO4 at the pair quantum resistance,” Nature 28, 458460.CrossRefGoogle Scholar
Caviglia, A. D., Gariglio, S., Reyren, N., Jaccard, D., Schneider, T., Gabay, M., Thiel, S., Hammerl, G., Mannhart, J., and Triscone, J. M. (2008). “Electric field control of the LaAlO3/SrTiO3 interface ground state,” Nature 456, 624627.CrossRefGoogle ScholarPubMed
Chen, L. M., Li, G. C., Zhang, Y., and Guo, Y. F. (2010). “Film thickness dependence of rectifying properties of La1.85Sr0.15CuO4/Nb–SrTiO3 junctions,” Chin. Phys. Lett. 27, 077401.Google Scholar
Cieplak, M. Z., Berkowski, M., Guha, S., Cheng, E., Vagelos, A. S., Rabinowitz, D. J., Wu, B., Trofimov, I. E., and Lindenfeld, P. (1994). “Thickness dependence of La2−xSrxCuO4 films,” Appl. Phys. Lett. 65, 33833385.CrossRefGoogle Scholar
Geerk, J., Zaitsev, A., Linker, G., Aidam, R., Schneider, R., Ratzel, F., Fromknecht, R., Scheerer, B., Reiner, H., Gaganidze, E., and Schwab, R. (2001). “A 3-chamber deposition system for the simultaneous double-sided coating of 5-inch wafers,” IEEE Trans. Appl. Supercond. 11, 38563858.CrossRefGoogle Scholar
Guo, Y. F., Guo, X., Lei, M., Chen, L. M., Tang, W. H., Li, P. G., Fu, X. L., and Li, L. H. (2009). “Doping tuned rectifying properties in La2−xSrxCuO4/Nb:SrTiO3 heterojunctions,” Appl. Phys. Lett. 94, 143506.CrossRefGoogle Scholar
Huang, W. W., Liu, B. T., Wu, F., Jia, S. L., Xu, B., and Zhao, B. R. (1999). “Single-crystalline-like La1−xSrxCuO4 thin films and their transport properties,” Supercond. Sci. Technol. 12, 529532.CrossRefGoogle Scholar
Koren, G. and Millo, O. (2009). “Conventional proximity effect in bilayers of superconducting underdoped La1.88 Sr0.12CuO4 islands coated with nonsuperconducting overdoped La1.65Sr0.35 CuO4,” Phys. Rev. B 80, 054507.CrossRefGoogle Scholar
Koren, G. and Millo, O. (2010). “Enhancement of the superconducting transition temperature of La2−xSrxCuO4 and La1.875Ba0.125CuO4 bilayers: bilayer and reference film prepared on the same wafer,” Phys. Rev. B 81, 134516.CrossRefGoogle Scholar
Liang, S., Chen, C. S., Shi, Z. Q., Lu, P., Lu, Y., and Kear, B. H. (1995). “Control of CeO2 growth by metalorganic chemical vapor deposition with a special source evaporator,” J. Crystal Growth 151, 359364.CrossRefGoogle Scholar
Rout, P. K. and Budhani, R. C. (2010). “Interface superconductivity in La1.48Nd0.4Sr0.12CuO4/La1.84Sr0.16CuO4 bilayers,” Phys. Rev. B 82, 024518.CrossRefGoogle Scholar
Shi, J. P., Zhao, Y. G., Zhang, H. J., and Zhang, X. P. (2008). “Effect of superconductivity on the electronic transport and capacitance of La1.85Sr0.15CuO4/Nb doped SrTiO3 heterojunction,” Appl. Phys. Lett 92, 132501.CrossRefGoogle Scholar
Shapiro, B.Ya., Shapiro, I., and Atzmon, Y. (2009). “Anomalous proximity effect in a superconductor under a strong electric field,” J. Phys.: Conf. Ser. 150, 052231.Google Scholar
Ueno, K., Nakamura, S., Shimotani, H., Ohtomo, A., Kimura, N., Nojima, T., Aoki, H., Iwasa, Y., and Kawasaki, M. (2008). “Electric-field-induced superconductivity in an insulator,” Nat. Mater. 7, 855858.CrossRefGoogle Scholar
Xiang, X. Q., Qu, J. F., Zhang, Y. Q., Lu, X. L., Zhou, T. F., Li, G., and Li, X. G. (2007). “I-V characteristics of La1.84Sr0.16CuO4/Nb-doped SrTiO3 heterojunction,” Appl. Phys. Lett. 90, 132513.CrossRefGoogle Scholar
Yin, Y. W., Ding, J. F., Wang, J., Xie, L., Yu, Q. X., and Li, X. G. (2010). “Current-voltage characteristics of La2−xSrxCuO4/Nb-doped SrTiO3 heterojunctions,” J. Appl. Phys. 107, 053915.CrossRefGoogle Scholar
Yuli, O., Asulin, I., Millo, O., Orgad, D., Iomin, L., and Koren, G. (2008). “Enhancement of the superconducting transition temperature of La2-x SrxCuO4 bilayers: role of pairing and phase stiffness,” Phys. Rev. Lett. 101, 057005.CrossRefGoogle Scholar