Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T12:54:04.380Z Has data issue: false hasContentIssue false

Qualitative and quantitative phase analyses of Pingguo bauxite mineral using X-ray powder diffraction and the Rietveld method

Published online by Cambridge University Press:  01 March 2012

Liangqin Nong
Affiliation:
College of Electronic and Communication Engineering, Guangxi University for Nationalities, Nanning, 530006, China
Xiying Yang
Affiliation:
Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi, 530004, China
Lingmin Zeng
Affiliation:
Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi, 530004, China
Jingping Liu
Affiliation:
Aluminium Corporation of China Ltd., Guangxi Branch, Pingguo, Guangxi, 531400, China

Abstract

X-ray powder diffraction technique and the Rietveld refinement method have been used successfully for the qualitative and quantitative analyses of Pingguo bauxite from Guangxi, China. Qualitative phase analysis shows that the Pingguo bauxite contains diaspore (AlOOH), hematite (Fe2O3), goethite (FeOOH), anatase (TiO2), and kaolinite (Al2(Si2O5)(OH)4). Quantitative Rietveld refinement shows that the weight concentrations of diaspore, goethite, hematite, anatase, and kaolinite for the Pingguo bauxite are 71.9(4)%, 7.0(8)%, 11.3(7)%, 6.5(6)%, and 3.3(9)%, respectively.

Type
Representative Papers from the Chinese XRD 2006 Conference
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aylmore, M. G. and Walker, G. S. (1998). “The quantification of lateritic bauxite minerals using X-ray powder diffraction by Rietveld method,” Powder Diffr.PODIE2 13, 136143.CrossRefGoogle Scholar
Bish, D. L. and Howard, S. A. (1988). “Quantitative mineralogical analysis using the Rietveld method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887009415 21, 8691.CrossRefGoogle Scholar
Bish, D. L. and Post, J. E. (1993). “Quantitative mineralogical analysis using the Rietveld full-pattern method,” Am. Mineral.AMMIAY 78, 932940.Google Scholar
Busing, W. R. and Levy, H. A. (1958). “A single crystal neutron diffraction study of diaspore AlO(OH),” Acta Crystallogr.ACCRA910.1107/S0365110X58002243 11, 798803.CrossRefGoogle Scholar
El-Sayed, K., Heiba, Z. K., and Abdel Rahman, A. M. (1990). “Crystal structure analysis and refinement of Kalabsha kaolinite,” Cryst. Res. Technol.CRTEDF 25, 305312.CrossRefGoogle Scholar
Finger, L. W. and Hazen, R. M. (1980). “Crystal structure and isothermal compression of Fe2O3, Cr2O3 and V2O3 to 50 kbars,” J. Appl. Phys.JAPIAU10.1063/1.327451 51, 53625367.CrossRefGoogle Scholar
Hazemann, J. L., Berar, J. F., and Manceau, A. (1991). “Rietveld studies of the aluminium-iron substitution in synthetic goethite,” Mater. Sci. ForumMSFOEP 79, 821826.CrossRefGoogle Scholar
Hill, R. J. and Howard, C. J. (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887086199 20, 467474.CrossRefGoogle Scholar
Howard, C. J., Sabine, T. M., and Dickson, F. (1991). “Structural and thermal parameters for rutile and anatase,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S010876819100335X 47, 462468.CrossRefGoogle Scholar
Howard, S. and Preston, K. D. (1989). “Profile fitting of powder diffraction patterns,” in Modern Powder Diffraction, edited by Bish, D. L. and Post, J. E. (The Mineralogical Society of America, Washington, DC), Vol. 20, pp. 217275.CrossRefGoogle Scholar
ICDD (2002). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, PA 19073-3272.Google Scholar
Iyengar, S. S. (1994). “High temperature X-ray diffraction analysis of selected ceramic mixtures,” Powder Diffr.PODIE2 9, 3843.CrossRefGoogle Scholar
Iyengar, S. S., Phadnis, N. V., and Suryanarayanan, R. (2001). “Quantitative analyses of complex pharmaceutical mixtures by the Rietveld method,” Powder Diffr.PODIE210.1154/1.1332076 16, 2024.CrossRefGoogle Scholar
Marciniak, H. and Diduszko, R. (1997). DMPLOT-Plot view program for Rietveld refinement method, Version 3 (Computer Software).Google Scholar
Materials Data, Inc. (1999). Jade 5.0 (Computer Software), Livermore, CA.Google Scholar
Suryanarayanan, R. (1995). “Powder X-ray Diffractometry,” in Physical Characterization of Pharmaceutical Solids, edited by Brittain, H. G. (Marcel Dekker, New York), pp. 187221.CrossRefGoogle Scholar
Young, R. A., Larson, A. C., and Paiva-Santos, C. O. (2000). User’s Guide to Program DBWS-9807a for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns with a PC and various other computers, School of Physics, Georgia Institute of Technology, Atlanta, GA.Google Scholar