Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T14:09:01.864Z Has data issue: false hasContentIssue false

Quantitative phase analysis of commercial ammonium phosphates by PXRD for application in biological systems

Published online by Cambridge University Press:  18 May 2023

Fabio F. Ferreira*
Affiliation:
Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
Aline P. C. Pereira
Affiliation:
Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
Ianny B. Reis
Affiliation:
Institute of Biology, Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
Bianca R. S. Sasaki
Affiliation:
Institute of Biology, Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
Wagner J. Fávaro
Affiliation:
Institute of Biology, Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
Nelson Durán*
Affiliation:
Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil Institute of Biology, Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
*
a)Authors to whom correspondence should be addressed. Electronic mail: fabio.furlan@ufabc.edu.br and nduran@unicamp.br
a)Authors to whom correspondence should be addressed. Electronic mail: fabio.furlan@ufabc.edu.br and nduran@unicamp.br

Abstract

Although being an old concern, phosphate analysis is still a tremendous challenge. While many different experimental techniques are found in the literature, very few use powder X-ray diffraction (PXRD) patterns for quantitative phase analysis of different phosphate types. Our measurements performed in four commercial samples of diammonium hydrogen phosphate ((NH4)2HPO4) (DAP) show the existence of phosphate contamination mixtures, such as ammonium dihydrogen phosphate (NH4H2PO4) (ADP). The larger the amount of ADP, the larger the microstrain induced in the DAP phase, which impacts both the aggregation of the nanoparticles in solution and the final anticancer activity of the nanostructure. This study shows that PXRD is an excellent technique for quantitative phase analysis to determine the presence and amount of phosphate contamination in diammonium hydrogen phosphate samples.

Type
Technical Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdolmohammadi, S., and Balalaie, S.. 2012. “An Efficient Synthesis of Pyrido[2,3-d]Pyrimidine Derivatives via One-Pot Three-Component Reaction in Aqueous Media.” International Journal of Organic Chemistry 2 (1): 714. doi:10.4236/ijoc.2012.21002.CrossRefGoogle Scholar
Allmann, R., and Hinek, R.. 2007. “The Introduction of Structure Types into the Inorganic Crystal Structure Database ICSD.” Acta Crystallographica Section A: Foundations of Crystallography 63 (5): 412–17. doi:10.1107/S0108767307038081.CrossRefGoogle ScholarPubMed
Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., and Rizzi, R.. 2015. “QUALX2.0: A Qualitative Phase Analysis Software Using the Freely Available Database POW-COD.” Journal of Applied Crystallography 48 (2): 598603. doi:10.1107/S1600576715002319.CrossRefGoogle Scholar
Balzar, D. (1999). “Voigt-Function Model in Diffraction Line-Broadening Analysis.” In Microstructure Analysis from Diffraction, edited by Snyder, R. L., Bunge, H. J., and Fiala, J.. International Union of Crystallography. doi:10.1.1.30.7311.Google Scholar
Bish, D. L., and Howard, S. A.. 1988. “Quantitative Phase Analysis Using the Rietveld Method.” Journal of Applied Crystallography 21 (2): 8691. doi:10.1107/S0021889887009415.CrossRefGoogle Scholar
Cheary, R. W., and Coelho, A. A.. 1998. “Axial Divergence in a Conventional X-Ray Powder Diffractometer. II. Realization and Evaluation in a Fundamental-Parameter Profile Fitting Procedure.” Journal of Applied Crystallography 31 (6): 862–68. doi:10.1107/S0021889898006888.CrossRefGoogle Scholar
Coelho, A. A. 2018. “TOPAS and TOPAS-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++.” Journal of Applied Crystallography 51 (1): 210–18. doi:10.1107/S1600576718000183.CrossRefGoogle Scholar
Durán, N., and Favaro, W.. 2018. “Biogenic Synthesis of Important Environmental Minerals: Magnesium Phosphate Compounds and Perspectives.” Química Nova 41 (5): 567–76. doi:10.21577/0100-4042.20170204.Google Scholar
Epstein, J. I., Amin, M. B., Reuter, V. R., and Mostofi, F. K.. 1998. “The World Health Organization/International Society of Urological Pathology Consensus Classification of Urothelial (Transitional Cell) Neoplasms of the Urinary Bladder.” The American Journal of Surgical Pathology 22 (12): 1435–48. doi:10.1097/00000478-199812000-00001.CrossRefGoogle ScholarPubMed
Favaro, W. F., and Durán, N.. 2017. Process of Obtaining Nanostructured Complex (CFI-1), Nanostructured Complex Associated with Protein (MRB-CFI-1) and use. PIBR 10 2017 012768 0, issued 2017.Google Scholar
Favaro, W. F., and Durán, N.. 2018. Process of Obtaining Nanostructured Complex (CFI-1), Nanostructured Complex Associated with Protein (MRB-CFI-1) and Use. PCT/BR2018/000031, issued 2018.Google Scholar
Favaro, W. F., and Durán, N.. 2022. Process of Obtaining Nanostructured Complex (CFI-1), Nanostructured Complex Associated with Protein (MRB-CFI-1) and use. US20200156951, issued 2022.Google Scholar
Fernández-García, C., Coggins, A. J., and Powner, M. W.. 2017. “A Chemist's Perspective on the Role of Phosphorus at the Origins of Life.” Life 7 (3): 31. doi:10.3390/life7030031.CrossRefGoogle ScholarPubMed
Food and Drug Administration (FDA). 2020. “Approved Drug Products with Therapeutic Equivalence Evaluations.” https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=065110.Google Scholar
Garcia, P. V., Seiva, F. R. F., Carniato, A. P., d. Mello, W. Jr., Duran, N., Macedo, A. M., de Oliveira, A. G. , R., Romih, I. S., Nunes, O. S., Nunes, and W. J., Fávaro. 2016. “Increased Toll-like Receptors and P53 Levels Regulate Apoptosis and Angiogenesis in Non-Muscle Invasive Bladder Cancer: Mechanism of Action of P-MAPA Biological Response Modifier.” BMC Cancer 16 (1): 422. doi:10.1186/s12885-016-2474-z.CrossRefGoogle ScholarPubMed
Gezgin, S., and Yossif, A. M.. 2019. “Influence of Mono-Ammonium and Diammonium Phosphate on Phosphorus Use Efficiency of Maize and Bread Wheat Plants.” Selcuk Journal of Agricultural and Food Sciences 33 (2): 99105. doi:10.15316/SJAFS.2019.163.Google Scholar
Gorazda, K., Banach, M., Makara, A., and Wzorek, Z.. 2011. “Increasing the Bulk Density of STPP - Influence of the Process Parameters.” Polish Journal of Chemical Technology 13 (2): 4045. doi:10.2478/v10026-011-0022-9.CrossRefGoogle Scholar
Gozzo, F., Cervellino, A., Leoni, M., Scardi, P., Bergamaschi, A., and Schmitt, B.. 2010. “Instrumental Profile of MYTHEN Detector in Debye-Scherrer Geometry.” Zeitschrift fur Kristallographie 225 (12): 616–24. doi:10.1524/zkri.2010.1345.CrossRefGoogle Scholar
Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T., and Le Bail, A.. 2012. “Crystallography Open Database (COD): An Open-Access Collection of Crystal Structures and Platform for World-Wide Collaboration.” Nucleic Acids Research 40 (D1): D42027. doi:10.1093/nar/gkr900.CrossRefGoogle ScholarPubMed
Hill, R. J., and Howard, C. J.. 1987. “Quantitative Phase Analysis from Neutron Powder Diffraction Data Using the Rietveld Method.” Journal of Applied Crystallography 20 (6): 467–74. doi:10.1107/S0021889887086199.CrossRefGoogle Scholar
Jegatheesan, A., Murugan, J., Neelagantaprasad, B., and Rajarajan, G.. 2012. “FTIR, XRD, SEM, TGA Investigations of Ammonium Dihydrogen Phosphate (ADP) Single Crystal.” International Journal of Computer Applications 53 (4): 1518. doi:10.5120/8408-2040.CrossRefGoogle Scholar
Khan, A. A., and Baur, W. H.. 1973. “Refinement of the Crystal Structures of Ammonium Dihydrogen Phosphate and Ammonium Dihydrogen Arsenate.” Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 29 (12): 2721–26. doi:10.1107/S0567740873007442.CrossRefGoogle Scholar
Khan, A. A., Roux, J. P., and James, W. J.. 1972. “The Crystal Structure of Diammonium Hydrogen Phosphate, (NH4)2HPO4.” Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 28 (7): 2065–69. doi:10.1107/S0567740872005539.CrossRefGoogle Scholar
Kumar Trivedi, M. 2015. “Comparative Physicochemical Evaluation of Biofield Treated Phosphate Buffer Saline and Hanks Balanced Salt Medium.” American Journal of BioScience 3 (6): 267–77. doi:10.11648/j.ajbio.20150306.20.CrossRefGoogle Scholar
Li, J., Wang, L., Han, M., Xiong, Y., Liao, R., Li, Y., Sun, S., Maharjan, A., and Su, B.. 2019. “The Role of Phosphate-Containing Medications and Low Dietary Phosphorus-Protein Ratio in Reducing Intestinal Phosphorus Load in Patients with Chronic Kidney Disease.” Nutrition & Diabetes 9 (1): 14. doi:10.1038/s41387-019-0080-2.CrossRefGoogle ScholarPubMed
Magda, A., Pode, R., Muntean, C., Medeleanu, M., and Popa, A.. 2010. “Synthesis and Characterization of Ammonium Phosphate Fertilizers with Boron.” Journal of the Serbian Chemical Society 75 (7): 951–63. doi:10.2298/JSC090228064M.CrossRefGoogle Scholar
Pierzynski, J., and Hettiarachchi, G. M.. 2018. “Reactions of Phosphorus Fertilizers with and without a Fertilizer Enhancer in Three Acidic Soils with High Phosphorus-Fixing Capacity.” Soil Science Society of America Journal 82 (5): 1124–39. doi:10.2136/sssaj2018.01.0064.CrossRefGoogle Scholar
Possenti, E., Conti, C., Diego Gatta, G., Realini, M., and Colombo, C.. 2019. “Diammonium Hydrogenphosphate Treatment on Dolostone: The Role of Mg in the Crystallization Process.” Coatings 9 (3): 169. doi:10.3390/coatings9030169.CrossRefGoogle Scholar
Rietveld, H. M. 1969. “A Profile Refinement Method for Nuclear and Magnetic Structures.” Journal of Applied Crystallography 2: 6571.CrossRefGoogle Scholar
Rowles, M. R. 2022. “PdCIFplotter: Visualizing Powder Diffraction Data in PdCIF Format.” Journal of Applied Crystallography 55 (3): 631–37. doi:10.1107/S1600576722003478.CrossRefGoogle ScholarPubMed
Sibous, S., Ghailane, T., Houda, S., Ghailane, R., Boukhris, S., and Souizi, A.. 2017. “Green and Efficient Method for the Synthesis of 1,5-Benzodiazepines Using Phosphate Fertilizers as Catalysts under Solvent-Free Conditions.” Mediterranean Journal of Chemistry 6 (3): 5359. doi:10.13171/mjc61/01701181035/souizi.CrossRefGoogle Scholar
Taghva, P. H., and Kabirifard, H.. 2020. “Three-Component Efficient Synthesis of 2-Amino-3-Cyano-4H-Pyrans Catalyzed by Diammonium Hydrogen Phosphate in Aqueous Media.” Current Organocatalysis 7. doi:10.2174/2213337207999200726235542.Google Scholar
Thilagavathi, G., Thaila, T., and Kumara Raman, S.. 2011. “Unidirectional Growth and Characterization of NLO Crystal: Potassium Dihydrogen Orthophosphate.” International Journal of Chemical Sciences 9 (2): 691–98.Google Scholar
Yossif, A. M., and Gezgin, S.. 2020. “Effects of Mono-Ammonium Phosphate and K-Humate Applications on Grain Yield and Phosphorus Uptake Efficiency of Bread Wheat Crop (Triticum aestivum L.).” International Journal of Plant & Soil Science 32 (2): 5261. doi:10.9734/ijpss/2020/v32i1230353.CrossRefGoogle Scholar
Young, R. A. 1993. “The Rietveld Method.Pdf.”CrossRefGoogle Scholar
Yu, H., Yang, H., Shi, E., and Tang, W.. 2020. “Development and Clinical Application of Phosphorus-Containing Drugs.” Medicine in Drug Discovery 8 (December): 100063. doi:10.1016/j.medidd.2020.100063.CrossRefGoogle ScholarPubMed
Zhang, J., Hu, X., and Zhou, Z.. 2015. “Efficient and Eco-Friendly Procedure for the Synthesis of 2-Amino-4H-Chromenes Catalyzed by Diammonium Hydrogen Phosphate.” Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 34 (4): 4751. doi:10.30492/ijcce.2015.15444.Google Scholar
Zhou, J. M., and Huang, P. M.. 1995. “Kinetics of Monoammonium Phosphate-Induced Potassium Release from Selected Soils.” Canadian Journal of Soil Science 75 (2): 197203. doi:10.4141/cjss95-027.CrossRefGoogle Scholar
Zhu, X., and Ma, J.. 2020. “Recent Advances in the Determination of Phosphate in Environmental Water Samples: Insights from Practical Perspectives.” TrAC Trends in Analytical Chemistry 127 (June): 115908. doi:10.1016/j.trac.2020.115908.CrossRefGoogle Scholar
Supplementary material: PDF

Ferreira et al. supplementary material

Ferreira et al. supplementary material

Download Ferreira et al. supplementary material(PDF)
PDF 4.2 MB