Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T05:50:37.710Z Has data issue: false hasContentIssue false

Rietveld refinement using synchrotron powder diffraction data for curcumin, C21H20O6, and comparison with density functional theory

Published online by Cambridge University Press:  21 November 2014

Joel W. Reid*
Affiliation:
Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
James A. Kaduk
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616
Subrahmanyam V. Garimella
Affiliation:
Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2, Canada
John S. Tse
Affiliation:
Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2, Canada
*
a)Author to whom correspondence should be addressed. Electronic mail: joel.reid@lightsource.ca

Abstract

Synchrotron powder diffraction data from beamline 08B1-1 at the Canadian Light Source have been used to examine the structure of curcumin, a prime component of the Asian spice turmeric. Rigid body refinement, with the application of restraints on distances and angles, was performed with the Rietveld software package GSAS yielding monoclinic lattice parameters of a = 12.6967(1) Å, b = 7.198 52(3) Å, c = 19.9533(2) Å, and β = 95.1241(6)° (C21H20O6, Z = 4, and space group P2/n). The refinement was compared with a recent single-crystal structure and ab initio results obtained with density functional theory calculations.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B. K., Ferstl, E. M., Davis, M. C., Herold, M., Kurtkaya, S., Camalier, R. F., Hollingshead, M. G., Kaur, G., Sausville, E. A., Rickles, F. R., Snyder, J. P., Liotta, D. C., and Shoji, M. (2004). “Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents,” Bioorg. Med. Chem. 12, 38713883.CrossRefGoogle ScholarPubMed
Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B 58, 380388.CrossRefGoogle ScholarPubMed
Dinnebier, R. E. (1999). “Rigid bodies in powder diffraction: a practical guide,” Powder Diffr. 14, 8492.CrossRefGoogle Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Zeit. Krist. 220, 571573.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Ishigami, Y., Goto, M., Masuda, Y., Takizawa, Y., and Suzuki, S. (1999). Shikizai Kyokaishi 72, 71; CSD Refcode BINMEQ01.CrossRefGoogle Scholar
Jayaprakasha, G. K., Jagan, L., Rao, M. and Sakariah, K. K. (2005). “Chemistry and biological activities of C. longa ,” Trends Food Sci. Technol. 16, 533548.CrossRefGoogle Scholar
Lake, C. H. and Toby, B. H. (2011). “Rigid body refinements in GSAS/EXPGUI,” Powder Diffr. 26, S13S21.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report No. LAUR 86-748). Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Liang, G., Yang, S., Zhou, H., Shao, L., Huang, K., Xiao, J., Huang, Z., and Li, X. (2009). “Synthesis, crystal structure and anti-inflammatory properties of curcumin analogues,” Eur. J. Med. Chem. 44, 915919.CrossRefGoogle ScholarPubMed
Mehta, K., Pantazis, P., McQueen, T., and Aggarwal, B. B. (1997). “Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumour cell lines,” Anti-Cancer Drugs 8, 470481.CrossRefGoogle Scholar
Mishra, S., Karmodiya, K., Surolia, N., and Surolia, A. (2008). “Synthesis and exploration of novel curcumin analogues as anti-malarial agents,” Bioorg. Med. Chem. 16, 28942902.CrossRefGoogle ScholarPubMed
Parimita, S. P., Ramshankar, Y. V., Suresh, S., and Guru Row, T. N. (2007). “Redetermination of curcumin: (1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-hepta-1,4,6-trien-3-one,” Acta Crystallogr. E 63, o860o862.Google Scholar
Rammohan, A. and Kaduk, J. A. (2014). “Structure and bonding in group 1 citrates,” manuscript in preparation.Google Scholar
Sanphui, P., Goud, N. R., Khandavilli, U. B. R., Bhanoth, S., and Nangia, A. (2011). “New polymorphs of curcumin,” Chem. Commun. 47, 50135015.CrossRefGoogle ScholarPubMed
Suo, Quan-ling, Huang, Yan-chun, Weng, Lin-hong, He, Wen-zhi, Li, Chun-ping, Li, Yun-xia, and Hong, Hai-long. (2006). Shipin Kexue (Beijing) 27, 27; CSD Refcode BINMEQ03.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open-source all-purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Tonnesen, H. H., Karlsen, J., and Mostad, A. (1982) “Structural studies of curcuminoids. I. The crystal structure of curcumin,” Acta Chem. Scand. B 36, 475479.CrossRefGoogle Scholar
Supplementary material: File

Reid Supplementary Material

Supplementary Material

Download Reid Supplementary Material(File)
File 348.1 KB