Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T23:20:06.746Z Has data issue: false hasContentIssue false

Solution of heavy atom structures from powder diffraction data using direct methods. A review of structures solved at Aarhus University

Published online by Cambridge University Press:  05 March 2012

Axel Nørlund Christensen*
Affiliation:
Crystal Chemistry, Højkolvej 7, DK-8210 Århus V, Denmark
*
a)Electronic mail: elin.axel@stofanet.dk

Abstract

Heavy atoms dominate the X-ray scattering from many inorganic compounds like oxides and oxalates, and often only partial structures of these compounds can be obtained by X-ray powder diffraction data. Combining information from X-ray and neutron diffraction data is an advantage. Scattering contributions from the atoms are more evenly distributed in neutron diffraction data than in X-ray diffraction data. Neutron diffraction data can then be used to complete a structure partially solved with data from an X-ray diffraction pattern. Examples of heavy atom structures solved in the time period 1983–2004 using direct methods outlined above are presented.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cascarano, G., Giacovazzo, C., and Guagliardi, A. (1994). “SIRPOW92 - a program for automatic solution of crystal structures by direct methods optimised for powder data,” J. Appl. Crystallogr. JACGAR 27, 435436.Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. and Rizzi, R. (1999). “EXPO: a program for full powder pattern decomposition and crystal structure solution,” J. Appl. Crystallogr. JACGAR 32, 339340.CrossRefGoogle Scholar
Bohle, D. S., Carron, K. T., Christensen, A. N., Goodson, P. A. and Powell, A. K. (1994). “Ruthenium π-complexes of o-benzoquinone,” Organometallics ORGND7 13, 13551373.CrossRefGoogle Scholar
Boultif, A. and Louer, D. (1991). “Indexing of powder diffraction patterns for low symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993.CrossRefGoogle Scholar
Christensen, A. N. (1988). “Ab initio crystal structure determination from synchrotron X-ray and neutron powder diffraction data,” Z. Kristallogr. ZEKRDZ 185, 692.Google Scholar
Christensen, A. N., Andersen, E. K., Andersen, I. G. K., Alberti, G., Nielsen, M. and Lehmann, M. S. (1990). “X-Ray powder diffraction study of layer compounds. The crystal structure of α-Ti(HPO4)∙2H2O, and a proposed structure of γ-Ti(H2PO 4)(PO 4)∙2H2O,” Acta Chem. Scand. ACHSE7 44, 865872.CrossRefGoogle Scholar
Christensen, A. N., Cox, D. E. and Lehmann, M. S. (1989). “A crystal structure determination of PbC2O4 from synchrotron X-Ray and neutron powder diffraction data,” Acta Chem. Scand. ACHSE7 43, 1925.CrossRefGoogle Scholar
Christensen, A. N., Hazell, R. G., Hewat, A. W. and O’Reilly, K. P. J. (1991). “The crystal structure of PbS2O3,” Acta Chem. Scand. ACHSE7 45, 469473.CrossRefGoogle Scholar
Christensen, A. N., Hazell, R. G., Bell, A. M. T. and Altomare, A. (1995). “Precision of a crystal structure derived from a synchrotron X-ray powder pattern. The structure of barium oxalate hydrate, BaC2O4∙2H2O,” J. Phys. Chem. Solids JPCSAW 56, 13591363.CrossRefGoogle Scholar
Christensen, A. N. and Jensen, S. J. (1967). “Hydrothermal preparation of α-ScOOH and γ-ScOOH crystal structures of α-ScOOH),” Acta Chem. Scand. (1947-1973) ACSAA4 21, 121126.CrossRefGoogle Scholar
Christensen, A. N. and Lehmann, M. S. (1984). “Rate of reactions between D2O and CaxAlyOz,” J. Solid State Chem. JSSCBI 51, 196204.CrossRefGoogle Scholar
Christensen, A. N. and Lehmann, M. S. (1984). “Direct methods in crystal structure determinations from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ A40, Supplement, C-360, 12. X-1.Google Scholar
Christensen, A. N., Lehmann, M. S. and Nielsen, M. (1985). “Solving crystal structures from powder diffraction data,” Aust. J. Phys. AUJPAS 38, 497505.CrossRefGoogle Scholar
Christensen, A. N., Norby, P. and Hanson, J. C. (1994). “A crystal structure determination of HgC2O4 from synchrotron X-ray and neutron powder diffraction data,” Z. Kristallogr. ZEKRDZ 209, 874877.CrossRefGoogle Scholar
Christensen, A. N., Scarlett, N. V. Y., Madsen, I. C., Jensen, T. R. and Hanson, J. C. (2003). “Real time study of cement and clinker phases hydration,” J. Chem. Soc. Dalton Trans. JCDTBI 2003, 15291536.CrossRefGoogle Scholar
Christensen, A. N., Lebech, B., Cheptiakov, D. and Hanson, J. C. (2005). “Structure of CaAl2O4∙8.28D2O from synchrotron X-ray and neutron powder diffraction,” Acta Crystallogr. (in preparation).Google Scholar
Favre-Nicolin, V. and Cerny, R. (2004). “FOX: modular approach to crystal structure determination from powder diffraction,” Mater. Sci. Forum MSFOEP 443–444 (EPDIC8) 3538.CrossRefGoogle Scholar
Foreman, D. W. Jr. (1968). “Neutron and X-ray diffraction study of Ca3Al2(O4D4)3, a garnetoid,” J. Chem. Phys. JCPSA6 48, 30373041.CrossRefGoogle Scholar
Guirado, F., Galí, S., Chinchón, S. and Rius, J. (1998). “Crystal structure solution of hydrated high-alumina cement from X-ray powder diffraction data,” Angew. Chem., Int. Ed. ACIEF5 37, 7275.3.0.CO;2-8>CrossRefGoogle Scholar
Kuznecova, T. P., Nevskij, N. N., Iljukhin, U. V. and Belov, N. V. (1980). “Refinement of the crystal structure of calcium chondrodite Ca5[SiO4]2(OH)2=Ca(OH)2∙2Ca2SiO4,” Sov. Phys. Crystallogr. SPHCA6 25, 9194.Google Scholar
Le Bail, A. (2001). “Trends in structure determination by powder diffractometry,” in Advances in Structure Analysis, edited by Kuzel, R. and Hasek, J. (Czech and Slovak Crystallographic Association), Praque, 166189.Google Scholar
Le Bail, A. (2002). MACMAILLE program, http://www.cristal.org/McMailleGoogle Scholar
Lehmann, M. S., Christensen, A. N.Fjellvåg, H., Feidenhans’l, R. and Nielsen, M. (1987). “Structure determination by use of pattern decomposition and the Rietveld method on synchrotron X-ray and neutron powder data; the structures of Al2Y4O9 and I2O4,” J. Appl. Crystallogr. JACGAR 20, 123129.CrossRefGoogle Scholar
Lehmann, M. S., Christensen, A. N., Nielsen, M., Feidenhans’l, R., and Cox, D. E. (1988). “High resolution powder diffraction employing a linear position sensitive detector and synchrotron X-ray radiation,” J. Appl. Crystallogr. JACGAR 21, 905910.CrossRefGoogle Scholar
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. and Declercq, J.-P. (1977). “MULTAN,” Universities of York, England, and Louvain, Belgium.Google Scholar
Masciocchi, N. (1995). “Solving crystal structures from powder diffraction data: Patterson, geometrical modelling, trial and error and maximum entropy methods,” Ric. Sci. Ed. Perm. (Milan), Suppl. 98, 115140.Google Scholar
Nolang, B. I. and Tergenius, L.-E. (1980). “The crystal structure of a new MnP4 modification determined by direct methods applied to powder data,” Acta Chem. Scand., Ser. A ACAPCT 34, 311312.CrossRefGoogle Scholar
Norby, P., Christensen, A. N. and Andersen, E. G. K. (1986). “Hydrothermal preparation of zeolite Li-A(BW), LiAlSiO4∙H2O, and structure determination from powder diffraction data by direct methods,” Acta Chem. Scand., Ser. A ACAPCT 40, 500506.CrossRefGoogle Scholar
Norby, P., Christensen, A. N., Fjellvåg, H., Lehmann, M. S. and Nielsen, M. (1991). “The Crystal structure of Cr8O21 determined from powder diffraction data. thermal transformation and magnetic properties of a chromium-chromate-tetrachromate,” J. Solid State Chem. JSSCBI 94, 281293.CrossRefGoogle Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. JACGAR 14, 357361.CrossRefGoogle Scholar
Richard, N., Lequeux, N. and Boch, P. (1995). “Local environment of Al and Ca in CAH10 and C2AH8 by X-ray absorption spectroscopy,” Eur. J. Solid State Inorg. Chem. EJSCE5 32, 649662.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571.CrossRefGoogle Scholar
Westman, S., Werner, P.-E., Schuler, T. and Raldow, W. (1981). “X-ray investigations of ammides of alkaline earth metal halides. I. The structures of CaCl2(NH3)8, CaCl2(NH3)2 and the decomposition product CaClOH,” Acta Chem. Scand., Ser. A ACAPCT 35, 467472.CrossRefGoogle Scholar
Wiles, D. B.Sakthivel, A. and Young, R. A. (1988). “DBW3.25S,” School of Physics, Georgia Institute of Technology, GA, USA.Google Scholar
Zachariasen, W. H. (1952). “A new analytical method for solving complex crystal structures,” Acta Crystallogr. ACCRA9 5, 6875.CrossRefGoogle Scholar
Zachariasen, W. H. and Ellinger, F. H. (1963). “The crystal structure of beta plutonium metal,” Acta Crystallogr. ACCRA9 16, 369375.CrossRefGoogle Scholar