Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-20T06:54:01.009Z Has data issue: false hasContentIssue false

Structural elucidation of the dichloridodioxido-[(4,7-dimethyl)-1,10-phenanthroline]molybdenum(VI) (C14H12Cl2MoN2O2)

Published online by Cambridge University Press:  18 September 2024

John D. Bonilla
Affiliation:
Laboratorio de Diseño y Reactividad de Estructuras Sólidas (Lab-DRES, 125), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá́ 11321, Colombia
Hernando Camargo
Affiliation:
Grupo de Investigación de Materiales de Interés Geológico y Geotécnico, Servicio Geológico Colombiano SGC, Diagonal 53 No. 34-53, Bogotá́, Colombia
Nelson J. Castellanos*
Affiliation:
Laboratorio de Diseño y Reactividad de Estructuras Sólidas (Lab-DRES, 125), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá́ 11321, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: njcastellanosm@unal.edu.co

Abstract

In this work, the synthesis, characterization, and X-ray powder diffraction data for dichloridodioxido-[(4,7-dimethyl)-1,10-phenanthroline]molybdenum(VI) are reported. The crystal structure of this compound was solved from powder diffraction data using the simulated annealing method with a subsequent refinement using the Rietveld method. The dioxo-molybdenum (VI) complex C14H12Cl2MoN2O2 crystallizes in a monoclinic system with space group C2/c (N° 15) with refined unit-cell parameters a = 12.9495 (5) Å, b = 9.7752 (4) Å,c = 12.0069 (6) Å, β = 101.702 (3) °, unit-cell volume V = 1488.27 (11) Å3, and values of Z′ = 0.5 and Z = 4. The molecules are organized into chains diagonally along the a and c axis. Parallel polyhedra are observed along these axes formed by the interactions of Mo, Cl, O, and N atoms present in the coordination sphere. The crystalline packing of this dioxo-molybdenum (VI) complex is dominated by five intermolecular hydrogen bonds, two intramolecular hydrogen bonds, and the four interactions between the centroids (CgICgJ) of the aromatic rings. An analysis of the Hirshfeld surface revealed that the greatest contributions of the attractive forces are given by HCl/ClH, HC/CH, HO/OH, and HH interactions.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agustin, D., Bibal, C., Neveux, B., Daran, J. C., and Poli, R.. 2009. “Structural Characterization and Theoretical Calculations of Cis-dioxo(Nsalicylidene-2-Aminophenolato)(Ethanol)Molybdenum(VI) Complexes MoO2(SAP)(EtOH) (SAP = N-Salicylidene-2 Aminophenolato).” Zeitschrift Fur Anorganische Und Allgemeine Chemie 635 (13–14): 2120–5. doi:10.1002/zaac.200900185.CrossRefGoogle Scholar
Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., and Rizzi, R.. 2009. “EXPO2009: Structure Solution by Powder Data in Direct and Reciprocal Space.” Journal of Applied Crystallography 42 (6): 1197–202. doi:10.1107/S0021889809042915.CrossRefGoogle Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A.. 2013. “EXPO2013: A Kit of Tools for Phasing Crystal Structures From Powder Data.” Journal of Applied Crystallography 46 (4): 1231–5. doi:10.1107/S0021889813013113.CrossRefGoogle Scholar
Anastas, P. T., and Kirchhoff, M. M.. 2002. “Origins, Current Status, and Future Challenges of Green Chemistry.” Accounts of Chemical Research 35 (9): 686694. doi:10.1021/ar010065m.CrossRefGoogle ScholarPubMed
Arzoumanian, H. 1998. “Molybdenum-oxo Chemistry in Various Aspects of Oxygen Atom Transfer Processes.” Coordination Chemistry Reviews 178–180 (PART 1): 191202. doi:10.1016/s0010-8545(98)00056-3.CrossRefGoogle Scholar
Arzoumanian, H., Lopez, R., and Agrifoglio, G.. 1994. “Synthesis and X-ray Characterization of Tetraphenylphosphonium Tetrathiocyanatodioxomolybdate(VI): A Remarkable Oxo Transfer Agent.” Inorganic Chemistry 33 (14): 31773179. doi:10.1021/ic00092a026.CrossRefGoogle Scholar
Arzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R., and Briceño, A.. 2006. “Synthesis and Characterization of Halo, Cyanato, Thiocyanato and Selenocyanato Molybdenum(VI) Dioxo and Dioxo-μ-oxo Complexes.” Transition Metal Chemistry 31 (5): 681689. doi:10.1007/S11243-006-0049-6/METRICS.CrossRefGoogle Scholar
Bakhtchadjian, R., Tsarukyan, S., Barrault, J., Martinez, F. O., Tavadyan, L., and Castellanos, N. J.. 2011. “Application of a Dioxo-Molybdenum(VI) Complex Anchored on TiO2 for the Photochemical Oxidative Decomposition of 1-chloro-4-ethylbenzene Under O2.” Transition Metal Chemistry 36 (8): 897900. doi:10.1007/s11243-011-9547-2.CrossRefGoogle Scholar
Barea, G., Lledos, A., Maseras, F., and Jean, Y.. 1998. “Cis,trans,cis or All-cis Geometry in d0 Octahedral Dioxo Complexes. An IMOMM Study of the Role of Steric Effects.” Inorganic Chemistry 37 (13): 3321–5. doi:10.1021/ic971226e.CrossRefGoogle Scholar
Bencini, A., and Lippolis, V.. 2010. “1,10-Phenanthroline: A Versatile Building Block for the Construction of Ligands for Various Purposes.” Coordination Chemistry Reviews 254 (17–18): 2096–180. doi:10.1016/J.CCR.2010.04.008.CrossRefGoogle Scholar
Bouzari, N., Bezaatpour, A., Babaei, B., Amiri, M., Boukherroub, R., and Szunerits, S.. 2021. “Modification of MnFe2O4 Surface by Mo (VI) Pyridylimine Complex as an Efficient Nanocatalyst for (ep)oxidation of Alkenes and Sulfides.” Journal of Molecular Liquids 330: 115690. doi:10.1016/J.MOLLIQ.2021.115690.CrossRefGoogle Scholar
Bruker AXS GmbH. 2017a. DIFFRACT.SUITE, User Manual: TOPAS, Technical Reference.Google Scholar
Bruker AXS GmbH. 2017b. Whole Powder Pattern Decomposition. In TOPAS Tutorial, User Manual (pp. 3438). Bruker.Google Scholar
Camargo, H. A., Henao, J. A., and Castellanos, N. J.. 2016. “Synthesis and X-ray Diffraction Data for Dibromo-dioxo-(1,10-phenanthroline-N,N′)-Molybdenum(VI) (C12H8N2MoBr2O2).” Powder Diffraction 31 (1): 6670. doi:10.1017/S0885715615000949.CrossRefGoogle Scholar
Castellanos, N. J., Martínez, F., Páez-Mozo, E. A., Ziarelli, F., and Arzoumanian, H.. 2012. “Bis(3,5-Dimethylpyrazol-1-yl)Acetate Bound to Titania and Complexed to Molybdenum Dioxido as a Bidentate N,N′-Ligand. Direct Comparison with a Bipyridyl Analog in a Photocatalytic Arylalkane Oxidation by O2.” Transition Metal Chemistry 37 (7): 629–37. doi:10.1007/s11243-012-9631-2.CrossRefGoogle Scholar
Castellanos, N. J., Martínez, F., Lynen, F., Biswas, S., Van Der Voort, P., and Arzoumanian, H.. 2013. “Dioxygen Activation in Photooxidation of Diphenylmethane by a Dioxomolybdenum(VI) Complex Anchored Covalently onto Mesoporous Titania.” Transition Metal Chemistry 38 (2): 119127. doi:10.1007/s11243-012-9668-2.CrossRefGoogle Scholar
Castellanos, N. J., Martínez Q, H., Martínez O, F., Leus, K., and Van Der Voort, P.. 2021. “Photo-Epoxidation of (α, β)-Pinene with Molecular O2 Catalyzed by a Dioxo-Molybdenum (VI)-Based Metal–Organic Framework.” Research on Chemical Intermediates 47 (10): 4227–44. doi:10.1007/s11164-021-04518-3.CrossRefGoogle Scholar
Cheary, R. W., and Coelho, A.. 1992. “Fundamental Parameters Approach to X-Ray Line-Profile Fitting.” Journal of Applied Crystallography 25 (pt 2): 109–21. doi:10.1107/S0021889891010804.CrossRefGoogle Scholar
Coelho, A., and Kern, A.. 2004. “Discussion of the Indexing Algorithms Within TOPAS.” Commision of Powder Diffraction 32: 43.Google Scholar
Dupé, A., Judmaier, M. E., Belaj, F., Zangger, K., and Mösch-Zanetti, N. C.. 2015. “Activation of Molecular Oxygen by a Molybdenum Complex for Catalytic Oxidation.” Dalton Transactions 44 (47): 20514–22. doi:10.1039/c5dt02931g.CrossRefGoogle ScholarPubMed
Heinze, K. 2015. “Bioinspired Functional Analogs of the Active Site of Molybdenum Enzymes: Intermediates and Mechanisms.” Coordination Chemistry Reviews 300: 121–41. doi:10.1016/j.ccr.2015.04.010.CrossRefGoogle Scholar
Hermans, I., Spier, E. S., Neuenschwander, U., Turrà, N., and Baiker, A.. 2009. “Selective Oxidation Catalysis: Opportunities and Challenges.” Topics in Catalysis 52 (9): 1162–74. doi:10.1007/s11244-009-9268-3.CrossRefGoogle Scholar
Hille, R. 2002. “Molybdenum and Tungsten in Biology.” Trends in Biochemical Sciences 27 (7): 360–7. doi:10.1016/S0968-0004(02)02107-2.CrossRefGoogle ScholarPubMed
Hille, R., Nishino, T., and Bittner, F.. 2011. “Molybdenum Enzymes in Higher Organisms.” Coordination Chemistry Reviews 255 (9–10): 1179–205. doi:10.1016/j.ccr.2010.11.034.CrossRefGoogle ScholarPubMed
Hofmann, M. 2006. “What is the Best Theoretical Method to Study Molybdenum Dithiolene Complexes?Journal of Molecular Structure: THEOCHEM 773 (1–3): 5970. doi:10.1016/J.THEOCHEM.2006.06.036.CrossRefGoogle Scholar
Hone, C. A., and Kappe, C. O.. 2019. “The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow.” Topics in Current Chemistry 377 (1): 144. doi:10.1007/s41061-018-0226-z.Google ScholarPubMed
Julião, D., Gomes, A. C., Cunha-Silva, L., Pillinger, M., Gonçalves, I. S., and Balula, S. S.. 2022. “Dichloro and Dimethyl Dioxomolybdenum(VI)-Bipyridine Complexes as Catalysts for Oxidative Desulfurization of Dibenzothiophene Derivatives Under Extractive Conditions.” Journal of Organometallic Chemistry 967: 122336. doi:10.1016/j.jorganchem.2022.122336.CrossRefGoogle Scholar
Kargar, H., Fallah-Mehrjardi, M., Behjatmanesh-Ardakani, R., Munawar, K. S., Ashfaq, M., and Tahir, M. N.. 2021. “Selective Oxidation of Benzyl Alcohols to Benzaldehydes Catalyzed by Dioxomolybdenum Schiff Base Complex: Synthesis, Spectral Characterization, Crystal Structure, Theoretical and Computational Studies.” Transition Metal Chemistry 46 (6): 437–55. doi:10.1007/s11243-021-00460-w.CrossRefGoogle Scholar
Kühn, F. E., Santos, A. M., and Abrantes, M.. 2006. “Mononuclear Organomolybdenum(VI) Dioxo Complexes: Synthesis, Reactivity, and Catalytic Applications.” Chemical Reviews 106 (6): 2455–75. doi:10.1021/cr040703p.CrossRefGoogle ScholarPubMed
Le Bail, A. 2005. “Whole Powder Pattern Decomposition Methods and Applications: A Retrospection.” Powder Diffraction 20 (4): 316–26. doi:10.1154/1.2135315.CrossRefGoogle Scholar
Martinez Q, H., Amaya, Á. A., Paez-Mozo, E. A., Martinez O, F., and Valange, S.. 2020. “Photo-Assisted O-Atom Transfer to Monoterpenes With Molecular Oxygen and a dioxoMo(VI) Complex Immobilized on TiO2 Nanotubes.” Catalysis Today 375, 441457. doi:10.1016/j.cattod.2020.07.053.CrossRefGoogle Scholar
Martínez, H., Cáceres, M. F., Martínez, F., Páez-Mozo, E. A., Valange, S., Castellanos, N. J., Molina, D., Barrault, J., and Arzoumanian, H.. 2016. “Photo-Epoxidation of Cyclohexene, Cyclooctene and 1-Octene With Molecular Oxygen Catalyzed by Dichloro Dioxo-(4,4′-Dicarboxylato-2,2′-Bipyridine) Molybdenum(VI)Grafted on Mesoporous TiO2.” Journal of Molecular Catalysis A: Chemical 423: 248–55. doi:10.1016/j.molcata.2016.07.006.CrossRefGoogle Scholar
Nunes, M. S., Gomes, A. C., Neves, P., Mendes, R. F., Almeida Paz, F. A., Lopes, A. D., Pillinger, M., Gonçalves, I. S., and Valente, A. A.. 2023. “Molybdenum(VI) Complexes With Ligands Derived from 5-(2-pyridyl)-2H-Tetrazole as Catalysts for the Epoxidation of Olefins.” Catalysis Today 423: 114273. doi:10.1016/J.CATTOD.2023.114273.CrossRefGoogle Scholar
Pawley, G. S. 1981. “Unit-Cell Refinement from Powder Diffraction Scans.” Journal of Applied Crystallography 14 (6): 357–61. doi:10.1107/s0021889881009618.CrossRefGoogle Scholar
Pietsch, M. A., and Hall, M. B.. 1996. “Theoretical Studies on Models for the Oxo-Transfer Reaction of Dioxomolybdenum Enzymes.” Inorganic Chemistry 35 (5): 1273–8. doi:10.1021/ic951044p.CrossRefGoogle ScholarPubMed
Qin, Y., Wang, B., Li, J., Wu, X., and Chen, L.. 2019. “Cobalt Imine–Pyridine–Carbonyl Complex Functionalized Metal–Organic Frameworks as Catalysts for Alkene Epoxidation.” Transition Metal Chemistry 44 (7): 595602. doi:10.1007/s11243-019-00319-1.CrossRefGoogle Scholar
Roduner, E., Kaim, W., Sarkar, B., Urlacher, V. B., Pleiss, J., Gläser, R., Einicke, W. D., Sprenger, G. A., Beifuß, U., Klemm, E., Liebner, C., Hieronymus, H., Hsu, S. F., Plietker, B., and Laschat, S.. 2013. “Selective Catalytic Oxidation of C-H Bonds with Molecular Oxygen.” Chemcatchem 5 (1): 82112. doi:10.1002/cctc.201200266.CrossRefGoogle Scholar
Roy, M., Biswal, D., Pramanik, N. R., Drew, M. G. B., Paul, S., Kachhap, P., Haldar, C., and Chakrabarti, S.. 2021. “Structural Elucidation, DFT Calculations and Catalytic Activity of Dioxomolybdenum(VI) Complexes With N–N Donor Ligand: Role of Halogen Atom Coordinated to the Molybdenum Centre.” Polyhedron 200: 115144. doi:10.1016/j.poly.2021.115144.CrossRefGoogle Scholar
Shen, Y., and Patrick Sullivan, B.. 1995. “A Versatile Preparative Route to 5-Substituted-1,10-Phenanthroline Ligands via 1,10-Phenanthroline 5,6-Epoxide.” Inorganic Chemistry 34 (25): 6235–6. doi:10.1021/ic00129a003.CrossRefGoogle Scholar
Spackman, M. A., and Jayatilaka, D.. 2009. “Hirshfeld Surface Analysis.” Crystengcomm 11 (1): 1932. doi:10.1039/b818330a.CrossRefGoogle Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., and Spackman, M. A.. 2021. “Crystalexplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals.” Journal of Applied Crystallography 54: 1006–11. doi:10.1107/S1600576721002910.CrossRefGoogle ScholarPubMed
Spek, A. L. 2003. “Single-Crystal Structure Validation with the Program PLATON.” Journal of Applied Crystallography 36 (1): 713. doi:10.1107/S0021889802022112.CrossRefGoogle Scholar
Spek, A. L. 2015. “PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors.” Acta Crystallographica Section C: Structural Chemistry 71 (1): 918. doi:10.1107/S2053229614024929.Google Scholar
Spek, A. L. 2020. “CheckCIF Validation ALERTS: What They Mean and How to Respond.” Acta Crystallographica Section E: Crystallographic Communications 76: 111. doi:10.1107/S2056989019016244.CrossRefGoogle ScholarPubMed
Zwettler, N., Ehweiner, M. A., Schachner, J. A., Dupé, A., Belaj, F., and Mösch-Zanetti, N. C.. 2019. “Dioxygen Activation With Molybdenum Complexes Bearing Amide-Functionalized Iminophenolate Ligands.” Molecules 24 (9), 1814. doi:10.3390/molecules24091814.CrossRefGoogle ScholarPubMed