Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T07:10:12.913Z Has data issue: false hasContentIssue false

Structural investigations of UTeO4

Published online by Cambridge University Press:  05 March 2012

S. N. Tripathi*
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Tombay, Mumbai-400085, India
P. N. Namboodiri
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Tombay, Mumbai-400085, India
*
a)Electronic mail: sntrip@rediffmail.com

Abstract

Our X-ray powder diffraction data determine that UTeO4 has an orthorhombic unit cell with parameters: a=10.115±0.003 Å, b=10.706±0.002 Å, c=7.833±0.002 Å, and v=848±0.40 (Å)3, i.e., the cell volume twice as large as that of UTeO5. IR spectral studies show that UTeO4 and UTeO5 have almost an identical molecular symmetry. In UTeO4, the effective environment of U and Te remains nearly the same as in UTeO5 and the UO2 group is noncentrosymmetric and nonlinear with little or no interaction with equatorial oxygen. Frequencies of the characteristic stretching bands of UTeO4 are (cm−1): νas (O=U=O)=945, νs (O=U=O)=880, νs (Te–O)eq=818, νas (Te–O)eq=749, νas (Te–O)ax=649, νs (Te–O)ax=561.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnaudov, M., Dimitrov, V., Dimitriev, Y., and Markova, L. (1982). “Infrared-spectral Investigation of Tellurites,” Mater. Res. Bull. MRBUAC 17, 11211129. mrb, MRBUAC CrossRefGoogle Scholar
Bullock, J. I. (1969). “Raman and infrared spectroscopic studies of the uranyl ion: The symmetric stretching frequency, force constants, and bond lengths,” J. Chem. Soc. A JCSIAP 1969, 781784. jca, JCSIAP CrossRefGoogle Scholar
Dickens, P. G., Stradling, E. P., Bearchell, C. A., and Fawcett, I. D. (1996). “Intercalation reactions of UTeO5 and USeO5,J. Mater. Chem. JMACEP 6, 12111217. jtc, JMACEP CrossRefGoogle Scholar
Erickson, N. E.and Maddock, A. G. (1970). “Mossbauer and other data on the oxides and oxyanions of Tellurium,” J. Chem. Soc. A JCSIAP 1970, 16665–1668. jca, JCSIAP Google Scholar
Gaines, R. V. (1969). “Cliffordite—A new Tellurite mineral from Moctezuma, Sonora, Mexico,” Am. Mineral. AMMIAY 54, 697701. amn, AMMIAY Google Scholar
Galy, P. J.and Meunier, G. (1971). “A propos de la Cliffordite UTe3O8. Le systeme UO3–TeO2 at 700 C. Structure Cristalline de UTe3O9,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 27, 608616. acb, ACBCAR CrossRefGoogle Scholar
Griffith, W. P. (1969). “Oxy-complexes and their vibrational spectra,” J. Chem. Soc. A JCSIAP 1969, 211218. jca, JCSIAP CrossRefGoogle Scholar
Lindqvist, O. (1968). “Refinement of the structure of −TeO2,Acta Chem. Scand. ACSAA4 22, 977982. 9em, ACSAA4 CrossRefGoogle Scholar
Loopstra, B. O.and Brandenburg, N. P. (1978). “Uranyl selenite and uranyl tellurite,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 34, 13351337. acb, ACBCAR CrossRefGoogle Scholar
Namboodiri, P. N.and Tripathi, S. N. (2000). “Preparation, characterization, and thermal stability of tellurites and tellurates of uranium,” J. Mater. Sci. JMTSAS 35, 337344. jmt, JMTSAS CrossRefGoogle Scholar
Siebert, H. (1966). Applications of Vibrational Spectroscopy in Inorganic Chemistry (Springer, Berlin), pp. 19, 103.Google Scholar
Tsuboi, M., Terada, M., and Shimanouchi, T. (1962). “Optically active lattice vibrations of -Uranium trioxide,” J. Chem. Phys. JCPSA6 36, 13011310. jcp, JCPSA6 CrossRefGoogle Scholar
Veal, B. W., Lam, D. J., Carnall, W. T., and Hoekstra, H. R. (1975). “X-ray photoemission spectroscopy study of hexavalent uranium compounds,” Phys. Rev. B PLRBAQ 12, 56515663. prq, PLRBAQ CrossRefGoogle Scholar