Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T10:22:02.431Z Has data issue: false hasContentIssue false

Structural study of nonlinear optical borates K1−xNaxSr4(BO3)3 (x≤0.5)

Published online by Cambridge University Press:  06 March 2012

L. Wu*
Affiliation:
The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, People’s Republic of China
Y. Zhang
Affiliation:
Institute of Photo-Electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, People’s Republic of China
W. W. Su
Affiliation:
The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, People’s Republic of China
Y. F. Kong
Affiliation:
The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, People’s Republic of China
J. J. Xu
Affiliation:
The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, People’s Republic of China
*
a)Author to whom correspondence should be addressed. Electronic mail: lwu@nankai.edu.cn

Abstract

X-ray powder diffraction was used for the structural study of nonlinear optical borates K1−xNaxSr4(BO3)3 (x≤0.5). Results show that up to 50% K+ can be substituted by Na+ in orthorhombic K1−xNaxSr4(BO3)3. Isolated BO3 triangles in the Na-substituted compound constrict to adjust to a local distribution of alkali-metal atoms, which explains the large range of structural homogeneity. An expansion of the c axis in a unit cell with increasing Na substitution was found probably caused by the tilted BO3 triangles and asymmetric distortion of (K/Na)O8 polyhedra. As the ratio of ionic radii of alkaline-earth and alkali-metal cations decreases and the electronegative difference between alkaline-earth and alkali-metal cations increases, the crystal system of MM4(BO3)3 borates changes from cubic to orthorhombic and then to monoclinic.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, P. (1998). “Borate materials in nonlinear optics,” Adv. Mater.ADVMEW 10, 979992.10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N3.0.CO;2-N>CrossRefGoogle Scholar
Chen, C. T., Wang, Y., Wu, B., Wu, K., Zeng, W., and Yu, L. (1995). “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature (London)NATUAS 373, 322324.10.1038/373322a0CrossRefGoogle Scholar
Chen, C. T., Wu, B., Jiang, A., and You, G. (1985). “A new type ultraviolet SHG crystal β-BaB2O4,” Sci. Sin., Ser. B (Engl. Ed.)SSBSEF 28, 235243.Google Scholar
Chen, C. T., Wu, Y., Jiang, A., Wu, B., You, G., Li, R., and Lin, S. (1989). “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. BJOBPDE 6, 616621.10.1364/JOSAB.6.000616CrossRefGoogle Scholar
Chen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W., and Wu, B. (1999). “Computer assisted search for nonlinear optical crystals,” Adv. Mater.ADVMEW 11, 10711078.10.1002/(SICI)1521-4095(199909)11:13<1071::AID-ADMA1071>3.0.CO;2-GGoogle Scholar
He, M., Chen, X. L., Okudera, H., and Simon, A. (2005). “(K1−xNax)2Al2B2O7 with 0≤x<0.6: A promising nonlinear optical crystal,” Chem. Mater.CMATEX 17, 21932196.10.1021/cm050142yCrossRefGoogle Scholar
Hu, Z. G., Higashiyama, T., Yoshimura, M., Mori, Y., and Sasaki, T. (2000). “Flux growth of the new nonlinear optical crystal: KaAl2B2O7,” J. Cryst. GrowthJCRGAE 212, 368371.10.1016/S0022-0248(00)00012-9CrossRefGoogle Scholar
Mori, Y., Kuroda, I., Nakajima, S., Sasaki, T., and Nakai, S. (1995). “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.APPLAB 67, 18181820.10.1063/1.115413CrossRefGoogle Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr.ACSEBH 22, 151152.10.1107/S0365110X67000234Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571.10.1107/S0021889869006558Google Scholar
Rodriguez-Carvajal, J., Fernandez-Diaz, M. T., and Martinez, J. L. (1991). “Neutron diffraction study on structural and magnetic properties of La2NiO4,” J. Phys.: Condens. MatterJCOMEL 3, 32153234.10.1088/0953-8984/3/19/002Google Scholar
Smith, R. W., Luce, J. L., and Keszler, D. A. (1992). “Framework alkali metal zinc orthoborates: AZn4(BO3)3 (A=K, Rb, Cs),” Inorg. Chem.INOCAJ 31, 46794682.10.1021/ic00048a042Google Scholar
Wu, L., Chen, X. L., Li, H., He, M., Dai, L., Li, X. Z., and Xu, Y. P. (2004a). “Structure determination of a new compound LiCaBO3,” J. Solid State Chem.JSSCBI 177, 11111116.10.1016/j.jssc.2003.10.018CrossRefGoogle Scholar
Wu, L., Chen, X. L., Li, H., He, M., Xu, Y. P., and Li, X. Z. (2005a). “Structure determination and relative properties of novel cubic borates M M 4′(BO3)3 (M=Li, M′=Sr and M=Na, M′=Sr, Ba),” Inorg. Chem.INOCAJ 44, 64096414.10.1021/ic050299sGoogle Scholar
Wu, L., Chen, X. L., Li, X. Z., Dai, L., Xu, Y. P., and Zhao, M. (2005b). “Synthesis and ab initio X-ray powder diffraction structure of the new alkali and alkaline-earth metal borate NaCaBO3,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE 61, i32i34.10.1107/S010827010401964XGoogle Scholar
Wu, L., Chen, X. L., Xu, Y. P., and Sun, Y. P. (2006). “Structure determination and relative properties of novel non-centrosymmetric borates M M 4′(>BO3)3 (M=Na, M′=Ca and M=K, M′=Ca, Sr),” Inorg. Chem.INOCAJ 45, 30423047.10.1021/ic051494+Google Scholar
Wu, L., Wang, C., Chen, X. L., Li, X. Z., Xu, Y. P., and Cao, Y. G. (2004b). “Ab initio structure determination of new compound Li4CaB2O6,” J. Solid State Chem.JSSCBI 177, 18471851.10.1016/j.jssc.2003.11.023CrossRefGoogle Scholar