Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-11T00:35:35.921Z Has data issue: false hasContentIssue false

A structural study of the (Na1−xKx)0.5Bi0.5TiO3 perovskite series as a function of substitution (x) and temperature

Published online by Cambridge University Press:  06 March 2012

G. O. Jones
Affiliation:
Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
J. Kreisel
Affiliation:
Laboratoire Matériaux et Génie Physique, ENS de Physique de Grenoble, BP 46, 38402 St. Martin d’Héres, France
P. A. Thomas*
Affiliation:
Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
*
a)Electronic mail: P.A.Thomas@warwick.ac.uk

Abstract

Rietveld neutron powder profile analysis of the (Na1−xKx)0.5Bi0.5TiO3 (NKBT) series (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) is reported over the temperature range 293–993 K. A detailed characterization of the structures and phase transitions occurring across this series as a function of temperature has been made. Room-temperature refinements have revealed a rhombohedral phase, space group R3c for x=0, 0.2, and 0.4, which exhibits an antiphase, aaa oxygen tilt system with parallel cation displacements along [111]p. An intermediate zero-tilt rhombohedral phase, space group R3m possessing cation displacements along [111]p, has been established for x=0.5 and 0.6. At the potassium-rich end of the series at x=0.8 and 1.0, a tetragonal phase, space group P4mm is observed possessing cation displacements along [001]. At the sodium-rich end of the series for x=0.2, the unusual tetragonal structure with space group P4bm is seen for Na0.5Bi0.5TiO3 which possesses a combination of in-phase a0a0c+ tilts and antiparallel cation displacements along the polar axis. Temperature-induced phase transitions are reported and structural modifications are discussed.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, H. M. (1962). J. Appl. Phys. JAPIAU 33, 1606. jap, JAPIAU CrossRefGoogle Scholar
Battle, P. D., Catlow, C. R. A., Drennan, J., and Murray, A. D. (1983). J. Phys. C JPSOAW 16, 561. jpc, JPSOAW CrossRefGoogle Scholar
Corker, D. L., Glazer, A. M., Whatmore, R. W., Stallard, A., and Fauth, F. (1998). J. Phys.: Condens. Matter JCOMEL 10, 6251. jcz, JCOMEL Google Scholar
CRYSTALLOGRAPHICA v1.50a (1995–98). Oxford Cryosystems, Oxon.Google Scholar
Elkechai, O., Mainer, M., and Mercurio, J. P. (1996). Phys. Status Solidi A PSSABA 157, 499. psa, PSSABA CrossRefGoogle Scholar
Elkechai, O., Marchet, P., Thomas, P., Manier, M., and Mercurio, J.-P. (1997). J. Mater. Chem. JMACEP 7, 91. jtc, JMACEP CrossRefGoogle Scholar
Emel’yanov, S. M., Raevskii, I. P., and Prokopalo, O. I. (1983). Sov. Phys. Solid State SPSSA7 25, 889. sps, SPSSA7 Google Scholar
Emel’yanov, S. M., Raevskii, I. P., Savenko, F. I., Popov, Yu. M., Zaitsev, S. M., and Mazankina, N. S. (1987). Sov. Phys. Solid State SPSSA7 29, 1446. sps, SPSSA7 Google Scholar
Gadzhiev, M. S., Abiev, A. K., Isupov, V. A., and Ismailzade, I. G. (1985). Sov. Phys. Solid State SPSSA7 27, 1502. sps, SPSSA7 Google Scholar
Gatehouse, B. M. and Lloyd, D. J.(1973). J. Chem. Soc. Dalton Trans., Inorganic Chem. 70.Google Scholar
Glazer, A. M. (1972). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 28, 3384. acb, ACBCAR CrossRefGoogle Scholar
Glazer, A. M.and Mabud, S. A. (1977). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 34, 1065. acb, ACBCAR CrossRefGoogle Scholar
Glazer, A. M.and Mabud, S. A. (1978). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 34, 1060. acb, ACBCAR CrossRefGoogle Scholar
Hong, K. S.and Park, S. E. (1996). J. Appl. Phys. JAPIAU 79, 388. jap, JAPIAU CrossRefGoogle Scholar
Horn, M., Schwerdtfeger, C. F., and Meagher, E. P. (1970). J. Am. Ceram. Soc. JACTAW 53, 124126. jac, JACTAW Google Scholar
Ivanova, V. V., Kapyshev, A. G., Venevtsev, Yu. N., and Zhananov, G. S. (1962). Izv. Akad. Nauk SSSR, Ser. Fiz. IANFAY 26, 358. ian, IANFAY Google Scholar
Isupov, V. A., Strlets, P. L., Serova, I. A., Yataenko, N. D., and Shirobokikh, T. M. (1964). Sov. Phys. Solid State SPSSA7 6, 615. sps, SPSSA7 Google Scholar
Jaffe, B., Cook, W. R., and Jaffe, H. (1971). Piezoelectric Ceramics (Academic, London).Google Scholar
Jones, G. O. (2001). Ph.D. thesis, University of Warwick.Google Scholar
Jones, G. O.and Thomas, P. A. (1999). Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ A55, 493. acf, ACACEQ Google Scholar
Jones, G. O.and Thomas, P. A. (2000). Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B56, 426. acl, ASBSDK CrossRefGoogle Scholar
Jones, G. O.and Thomas, P. A. (2002). Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B58, 168. acl, ASBSDK CrossRefGoogle Scholar
Kreisel, J., Glazer, A. M., Jones, G. O., Thomas, P. A., Abello, L., and Lucazeau, G. (2000). J. Phys.: Condens. Matter JCOMEL 12, 3267. jcz, JCOMEL Google Scholar
Megaw, H. D.and Darlington, C. N. (1975). Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN A31, 161. aca, ACACBN CrossRefGoogle Scholar
Park, J. H., Woodward, P. M., and Parise, J. B. (1998). Chem. Mater. CMATEX 10, 3092. cma, CMATEX CrossRefGoogle Scholar
Park, S. E.and Hong, K. S. (1997). J. Mater. Res. JMREEE 12, 2152. jmr, JMREEE CrossRefGoogle Scholar
Pronin, I. P., Parfenova, N. N., Zaitseva, N. V., Isupov, V. A., and Smolenskii, G. A. (1982). Sov. Phys. Solid State SPSSA7 24, 1060. sps, SPSSA7 Google Scholar
Sakata, K.and Masuda, Y. (1974). Ferroelectrics FEROA8 7, 347. fer, FEROA8 CrossRefGoogle Scholar
Sakata, K., Takenaka, T., and Naitou, Y. (1992). Ferroelectrics FEROA8 131, 219. fer, FEROA8 CrossRefGoogle Scholar
Shannon, R. D. (1976). Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 32, 751. aca, ACACBN CrossRefGoogle Scholar
Shirane, G.and Takeda, A. (1952). J. Phys. Soc. Jpn. JUPSAU 1, 5. jup, JUPSAU CrossRefGoogle Scholar
Shirane, G.and Suzuki, K. (1952). J. Phys. Soc. Jpn. JUPSAU 7, 333. jup, JUPSAU CrossRefGoogle Scholar
Smolenskii, G. A., Isupov, V. A., Agranovskaya, A. I., and Krainik, N. N. (1960). Sov. Phys. Solid State SPSSA7 2, 2982. sps, SPSSA7 Google Scholar
Suchanicz, J.and Ptak, W. S. (1990). Ferroelectr. Lett. Sect. FELEDJ 12, 71. fls, FELEDJ CrossRefGoogle Scholar
Suchanicz, J.and Kwapulinski, J. (1995). Ferroelectrics FEROA8 165, 249. fer, FEROA8 CrossRefGoogle Scholar
Swainson, I. P., Dove, M. T., and Harris, M. J. (1995). J. Phys.: Condens. Matter JCOMEL 7, 4395. jcz, JCOMEL Google Scholar
Takenaka, T., Sakata, K., and Toda, K. (1989). J. Appl. Phys. JAPIAU 28, 59. jap, JAPIAU CrossRefGoogle Scholar
Tu, C., Siny, I., and Schmidt, V. (1994). Phys. Rev. B PRBMDO 49, 11550. prb, PRBMDO CrossRefGoogle Scholar
Vakhruskev, S. B., Kvyatkovskii, B. E., Malysheva, R. S., Okuneva, N. M., and Syrnikov, P. P. (1989). Kristallografiya KRISAJ 34, 154. krg, KRISAJ Google Scholar
Von Dreele, R. and Larson, A. (1995). University of California.Google Scholar
Willis, A. S. and Brown, I. D. (1999), VALIST, CEA, France.Google Scholar
Yamada, Y., Akutsu, T., Asada, H., Nozawa, K., Hachachiga, S., Kurosaki, T., Fujiki, H., Hozumi, K., Kawamura, T., Amakawa, T., Hirota, K., and Ikeda, T. (1995). Jpn. J. Appl. Phys., Part 1 JAPNDE 34, 5462. jjb, JAPNDE CrossRefGoogle Scholar
Zvirgzds, J. A., Kapostins, P. P., Zvirgzde, J. V., and Kruzina, T. V. (1982). Ferroelectrics FEROA8 40, 75. fer, FEROA8 CrossRefGoogle Scholar