Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T09:24:58.189Z Has data issue: false hasContentIssue false

Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses

Published online by Cambridge University Press:  06 March 2012

Ángeles G. De la Torre
Affiliation:
Dept. Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos, 29071-Málaga, Spain
María-Gema López-Olmo
Affiliation:
Dept. Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos, 29071-Málaga, Spain
Carmen Álvarez-Rua
Affiliation:
Dept. Química Física y Analítica, Universidad de Oviedo, C Julian Claveria, 33006-Oviedo, Spain
Santiago García-Granda
Affiliation:
Dept. Química Física y Analítica, Universidad de Oviedo, C Julian Claveria, 33006-Oviedo, Spain
Miguel. A. G. Aranda*
Affiliation:
Dept. Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos, 29071-Málaga, Spain
*
a)Author to whom correspondence should be addressed; electronic mail: g_aranda@uma.es

Abstract

Single crystals of gypsum were studied in a diffractometer equipped with a CCD two-dimensional detector. The microstructure of the crystal gave wide poorly shaped spots showing sometimes curved streaks around the spots, which made the integration process very difficult, yielding a low quality structure. The crystal structure and microstructure of gypsum has been studied by high-resolution synchrotron powder diffraction of a ground single crystal. The intensities in the synchrotron powder pattern can be reliably fitted although the peak shape displays anisotropic peak broadening. The Rietveld results for gypsum were a=6.522 91(3) Å, b=15.197 63(9) Å, c=6.522 91(3) Å, β=118.479(1)°, V=494.536(5) Å3 and Z=4 (s.g. I2/c) with RWP=5.39% and RF=1.64%. We have also studied the influence of the structural description used for gypsum in a synchrotron Rietveld quantitative phase analysis of a standard mixture containing 50 wt % of CaSO4⋅2H2O and Al2O3. Finally, the effects of the type of preferred orientation correction for laboratory X-ray powder data are also discussed. © 2004 International Centre for Diffraction Data.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atoji, M.and Rundle, R. E. (1958). “Neutron diffraction study of gypsum, CaSO4⋅2H2O,J. Chem. Phys. JCPSA6 29, 13061311. jcp, JCPSA6 Google Scholar
Bish, D. L.and Howard, S. A. (1988). “Quantitative phase analysis using the Rietveld method,” J. Appl. Crystallogr. JACGAR 21, 8691. acr, JACGAR CrossRefGoogle Scholar
Cole, W. F.and Lancucki, C. J. (1974). “A refinement of the crystal structure of gypsum CaSO4⋅2H2O,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B30, 921929. acb, ACBCAR CrossRefGoogle Scholar
Courbion, G.and Ferey, G. J. (1988). “Na2Ca3Al2F14-A new example of a structure with independent-F-A new method of comparison between fluorides and oxides of different formula,” J. Solid State Chem. JSSCBI 76, 426431. jss, JSSCBI CrossRefGoogle Scholar
De Aza, A. H., de la Torre, A. G., Aranda, M. A. G., and De Aza, S. (2004). “Quantitative Rietveld Analysis of Buen Retiro porcelains,” J. Am. Ceram. Soc. JACTAW 87, 449454. jac, JACTAW CrossRefGoogle Scholar
De la Torre, A. G. and Aranda, M. A. G. (2003a). “Rietveld mineralogical analysis of Portland cements,” Proceedings of the 11th International Congress on the Chemistry of Cement, pp. 135–144. Durban, South Africa. ISBN: 0-958-40858-0.Google Scholar
De la Torre, A. G.and Aranda, M. A. G. (2003b). “Accuracy in Rietveld quantitative phase analysis of Portland cements,” J. Appl. Crystallogr. JACGAR 36, 11691176. acr, JACGAR CrossRefGoogle Scholar
De la Torre, A. G., Bruque, S., and Aranda, M. A. G. (2001b). “Rietveld quantitative amorphous content analysis,” J. Appl. Crystallogr. JACGAR 34, 196202. acr, JACGAR CrossRefGoogle Scholar
De la Torre, A. G., Bruque, S., Campo, J., and Aranda, M. A. G. (2002). “The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses,” Cem. Concr. Res. CCNRAI 32, 13471356. ccn, CCNRAI CrossRefGoogle Scholar
De la Torre, A. G., Cabeza, A., Calvente, A., Bruque, S., and Aranda, M. A. G. (2001a). “Full phase analysis of Portland clinker by penetrating synchrotron powder diffraction,” Anal. Chem. ANCHAM 73, 151156. anc, ANCHAM CrossRefGoogle ScholarPubMed
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr. JACGAR 19, 267272. acr, JACGAR CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to diaxial divergence,” J. Appl. Crystallogr. JACGAR 27, 892900. acr, JACGAR Google Scholar
Gollop, R. S.and Taylor, H. F. W. (1992). “Microstructural and microanalytical studies of sulphate attack. I. Ordinary Portland cement paste,” Cem. Concr. Res. CCNRAI 22, 10271038. ccn, CCNRAI CrossRefGoogle Scholar
Hill, R. J.and Howard, C. J. (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. JACGAR 20, 467474. acr, JACGAR CrossRefGoogle Scholar
Kockelmann, W.and Kirfel, A. (2001). “Non-destructive phase analysis of archaeological ceramics using TOF neutron diffraction,” J. Archaeological Sc. ZZZZZZ 28, 213222.CrossRefGoogle Scholar
Laperche, V.and Bigham, J. M. (2002). “Quantitative, chemical, and mineralogical characterization of flue gas desulfurization by-products,” J. Environ. Qual. JEVQAA 31, 979988. 9r8, JEVQAA Google ScholarPubMed
Larson, A. C. and Von Dreele, R. B. (1994). Los Alamos National Lab. Rep. No. LA-UR-86-748, Los Alamos. GSAS program @http://public.lanl.gov:80/gsas/.Google Scholar
Lawrence, C. L. (1998). “The constitution and specification of Portland cements,” in Lea’s Chemistry of Cement and Concrete, 4th ed. (Hewlett, London).Google Scholar
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D., and Lwin, T. (2001). “Outcomes of the International Union of Crystallography Commission on powder diffraction round robin on quantitative phase analysis: Samples 1a to 1h,” J. Appl. Crystallogr. JACGAR 34, 409426. acr, JACGAR CrossRefGoogle Scholar
Maslen, E. N., Streltsov, V. A., Streltsova, N. R., Ishizawa, N., and Satow, Y. (1993). “Synchrotron x-ray study of the electron-density in α-Al2O3,Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B49, 973980. acl, ASBSDK CrossRefGoogle Scholar
Masson, O., Dooryhee, E., Cheary, R. W., and Fitch, A. N. (2001). “Instrumental resolution function of the ESRF powder diffraction beamline BM16,” Mater. Sci. ForumMSFOEP 378–381, 300305.CrossRefGoogle Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinements guidelines,” J. Appl. Crystallogr. JACGAR 32, 3650. acr, JACGAR CrossRefGoogle Scholar
Neubauer, J.and Sieber, R. (1996). “Quantification of a mixture of synthetic alite and belite by the Rietveld Method,” Mater. Sci. Forum MSFOEP 228–231, 807812. msf, MSFOEP CrossRefGoogle Scholar
Pajares, I., De la Torre, A. G., Martínez-Ramírez, S., Puertas, F., Blanco-Varela, M. T., and Aranda, M. A. G. (2002). “Quantitative analysis of mineralized white Portland clinkers: The structure of Fluorellestadite,” Powder Diffr. PODIE2 17, 281286. pdj, PODIE2 CrossRefGoogle Scholar
Pedersen, B. F.and Semmingsen, D. (1982). “Neutron diffraction refinement of the structure of gypsum, CaSO4⋅H2O,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B38, 10741077. acb, ACBCAR CrossRefGoogle Scholar
Riedmiller, J., Pollmann, H., and Motzet, H. (1998). “Quantification of calcium sulphate hydrates with X-ray diffractometry using the Rietveld analysis,” ZKG Int. ZZZZZZ 51, 452459.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Sahu, S.and Majling, J. (1994). “Preparation of sulphoaluminate belite cement from fly ash,” Cem. Concr. Res. CCNRAI 24, 10651072. ccn, CCNRAI CrossRefGoogle Scholar
Scarlett, N. V. Y., Madsen, I. C., Cranswick, L. M. D., Lwin, T., Groleau, E., Stephenson, G., Aylmore, M., and Agron-Olshina, N. (2002). “Outcomes of the International Union of Crystallography Commission on powder diffraction round robin on quantitative phase analysis: Samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals,” J. Appl. Crystallogr. JACGAR 35, 383400. acr, JACGAR CrossRefGoogle Scholar
Scarlett, N. V. Y., Madsen, I. C., Manias, C., and Retallack, D. (2001). “On-line X-ray diffraction for quantitative phase analysis: Application in the Portland cement industry,” Powder Diffr. PODIE2 16, 7180. pdj, PODIE2 CrossRefGoogle Scholar
Schofield, P. F., Knight, K. S., and Stretton, I. C. (1996). “Thermal expansion of gypsum investigation by neutron powder diffraction,” Am. Mineral. AMMIAY 81, 847851. amn, AMMIAY CrossRefGoogle Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. JACGAR 32, 281289. acr, JACGAR CrossRefGoogle Scholar
Suherman, P. M., Riessen, A. V., O’Connor, B., Li, D., Bolton, D., and Fairhurst, H. (2002). “Determination of amorphous phase levels in Portland cement clinker,” Powder Diffr. PODIE2 17, 178185. pdj, PODIE2 CrossRefGoogle Scholar
Taylor, H. F. W. (1997). Cement Chemistry, 2nd ed. (Telford, London).Google Scholar
Taylor, J. C., Hinczak, I., and Matulis, C. E. (2000). “Rietveld full-profile quantification of Portland clinker: The importance of including a full crystallography of the major phase polymorphs,” Powder Diffr. PODIE2 15, 718. pdj, PODIE2 CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hasting, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,J. Appl. Crystallogr. JACGAR 20, 7983. acr, JACGAR CrossRefGoogle Scholar
Von Dreele, R. B. (1997). “Quantitative texture analysis by Rietveld refinement,” J. Appl. Crystallogr. JACGAR 30, 517525. acr, JACGAR Google Scholar
Wooster, W. A. (1936). “On the crystal structure of gypsum CaSO4⋅2H2O.Z. Kristallogr. ZEKRDZ 94, 375396. zek, ZEKRDZ CrossRefGoogle Scholar
Young, R. A. (1993). The Rietveld Method (Oxford University Press, Oxford).CrossRefGoogle Scholar