Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T07:51:04.581Z Has data issue: false hasContentIssue false

Structure of multi-functional calcium phosphates/TiO2 layers deposited on NiTi shape-memory alloy

Published online by Cambridge University Press:  17 April 2017

Tomasz Goryczka*
Affiliation:
Institute of Materials Science, University of Silesia, Chorzow, Poland
Karolina Dudek
Affiliation:
Institute of Materials Science, University of Silesia, Chorzow, Poland
*
a)Author to whom correspondence should be addressed. Electronic mail: tomasz.goryczka@us.edu.pl

Abstract

The structure of the NiTi matrix covered by multi-layer was studied applying X-ray diffraction techniques supported by electron microscopy. Multi-layer was composed from titanium oxide (passivation) followed by mixture of the hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) (electrophoresis). Conditions of deposition as well as sintering did not change the nominal ratio of HAp/TCP and saved their original structure. Also, the passivated NiTi matrix and with HAp/TCP-deposited layer did not change structure. However, sintering, done for HAp/TCP consolidation, introduced local differences in the lattice parameter as well as phase composition of the NiTi matrix. In consequence of that, two-steps martensitic transformation occurred in sintered NiTi/TiO2/Hap–TCP composite.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boccaccini, R., Keim, S., Ma, R., Li, Y., and Zhitomirsky, I. (2010). “Electrophoretic deposition of biomaterials”, J. R. Soc. Interface 7, S580S613.CrossRefGoogle ScholarPubMed
Cullity, B. D. (1956). Elements of X-ray Diffraction (Addison-Wesley, Reading, Massachusetts), p. 269.Google Scholar
Dong, P., Yuan, L. W., Hao, W. C., Xia, Y. Y., Da, G. Z., and Wang, T. M. (2009). “Biocompatibility of Chitosan/Heparin multilayer coating on NiTi alloy”, Mat. Sci. Forum 610–613, 11791182.CrossRefGoogle Scholar
Dorozhkin, S. V. (2009). “Calcium orthophosphates in nature, biology and medicine”, Materials 2, 399498.CrossRefGoogle Scholar
Dorozhkin, S. V. (2012). “Calcium orthophosphate coatings, films and layers”, Progr. Biomater. 1, 240.CrossRefGoogle ScholarPubMed
Dorozhkin, S. V. (2015). “Calcium orthophosphate deposits: preparation, properties and biomedical applications”, Mater. Sci. Eng. C 55, 272326.CrossRefGoogle ScholarPubMed
Dudek, K., Szaraniec, B., Lelątko, J., and Goryczka, T. (2013). “Structure of multi-layers deposited on NiTi shape memory alloy”, Solid State Phenom. 203–204, 9093.CrossRefGoogle Scholar
Es-Souni, M., Es-Souni, M., and Fischer-Brandies, H. (2005). “Assessing the biocompatibility of NiTi shape memory alloys used for medical applications”, Anal. Bioanal. Chem. 381, 557567.CrossRefGoogle ScholarPubMed
Funakubo, H. (1987). Shape Memory Alloys (Gordon and Breach Science Publisher, London), p. 61.Google Scholar
Goryczka, T. (2008). “Martensitic transformation in Ni–Ti–Co strip produced by twin roll casting”, Mater. Sci. Eng. A 481–482, 676679.CrossRefGoogle Scholar
Grandfield, K., Sun, F., FitzPatrick, M., Cheong, M., and Zhitomirsky, I. (2009). “Electrophoretic deposition of polymer-carbon nanotube–hydroxyapatite composites”, Surf. Coat. Technol. 203, 14811487.CrossRefGoogle Scholar
Horowitz, R. A., Mazor, Z., Foitzik, Ch., Prasad, H., Rohrer, M., and Palti, A. (2009). “β-tricalcium phosphate as bone substitute material: properties and clinical applications”, Titanium 1, 211.Google Scholar
Hunter, B. A. and Howard, C. J. (1998). LHPM a computer program for Rietveld analysis of X-ray and neutron powder diffraction patterns, version 4.2. Lucas Heights Research Laboratories ANSTO, Australia.Google Scholar
Johan, W. M., Vehof, P., Spauwen, H. M., and Jansen, J. A. (2000). “Bone formation in calcium-phosphate-coated titanium mesh”, Biomaterials 21, 20032009.Google Scholar
Khalil-Allafi, J., Eggeler, G., Dlouhy, A., Schmahl, W. W., and Somsen, Ch. (2004). “On the influence of heterogeneous precipitation on martensitic transformations in a Ni-rich NiTi shape memory alloy”, Mater. Sci. Eng. A 378, 148151.CrossRefGoogle Scholar
LeGeros, R. Z., Lin, S., Rohanizadeh, R., Mijares, D., and LeGeros, J. P. (2003). “Biphasic calcium phosphate bioceramics: preparation, properties and applications”, J. Mater. Sci.: Mater. Med. 14, 201209.Google ScholarPubMed
Lobo, S. E. and Arinzeh, T. L. (2010). “Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications”, Materials 3, 815826.CrossRefGoogle Scholar
Malysheva, A. Yu. and Beletskii, B. I. (2001). “Biocompatibility of apatite-containing implant materials”, Inorg. Mater 37, 180183.CrossRefGoogle Scholar
Morawiec, H., Stróż, D., Goryczka, T., and Chrobak, D. (1996). “Two-stage martensitic transformation in a deformed and annealed NiTi alloy”, Scr. Mater. 35, 485490.CrossRefGoogle Scholar
Morawiec, H., Goryczka, T., Lelątko, J., Lekston, Z., Winiarski, A., Rówiński, E., and Stergioudis, G. (2010). “Surface structure of NiTi alloy passivated by autoclaving”, Mater. Sci. Forum 636–637, 971976.CrossRefGoogle Scholar
Philip, T. V. and Beck, P. A. (1957). “CsCl – type ordered structures in binary alloys of transition elements”, Trans. AIME 209, 12691271.Google Scholar
Skrzypek, S. J. (2002). New Approach to Measuring Residual Macro-stresses with the Application of the Grazing Angle X-ray Diffraction Geometry (AGH Academical Scientific-educational Publishing, Cracov), p. 84.Google Scholar
Sun, F., Sask, K., Brash, J. L., and Zhitomirsky, I. (2008). “Surface modification of Nitinol for biomedical applications”, Colloid Surface B 67, 132139.CrossRefGoogle ScholarPubMed
Yoneyama, T. and Miyazaki, S. (2009). Shape Memory Alloys for Biomedical Applications (Woodhead Publishing Limited, Cambridge).Google Scholar
Young, R. A. (1993). “Introduction to the Rietveld method,” in The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford, UK), pp. 138.CrossRefGoogle Scholar
Zhitomirsky, I. (2002). “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects”, Adv. Colloid Interface Sci. 97, 279317.CrossRefGoogle ScholarPubMed