Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T08:09:12.706Z Has data issue: false hasContentIssue false

Structures and anisotropic thermal expansion of the α, β, γ, and δ polymorphs of Y2Si2O7

Published online by Cambridge University Press:  29 February 2012

M. D. Dolan
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802and CSIRO Division of Energy Technology, Kenmore, Queensland 4069, Australia
B. Harlan
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802
J. S. White
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802
M. Hall
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802
S. T. Misture*
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802
S. C. Bancheri
Affiliation:
GE Global Research, 1 Research Circle, Niskayuna, New York 12309
B. Bewlay
Affiliation:
GE Global Research, 1 Research Circle, Niskayuna, New York 12309
*
a)Author to whom correspondence should be addressed. Electronic mail: misture@alfred.edu

Abstract

The α, β, γ, and δ polymorphs of Y2Si2O7 were synthesized using sol-gel and solid-state methods. The structures of the α and γ polymorphs were determined by identification of isostructural rare-earth disilicates, and the structures were refined using Rietveld analysis of X-ray powder diffraction data. The α polymorph crystallizes in space group P1, with a=6.5872(6) Å, b=6.6387(7) Å, c=12.032(1) Å, α=94.501(7)°, β=90.984(8)°, γ=91.771(7)°, and volume=524.16(9) Å3. The γ form is described by space group P21/c, a=4.68824(5) Å, b=10.84072(9) Å, c=5.58219(6) Å, and γ=96.0325(3)°. The anisotropic thermal expansion of each phase was measured using high temperature diffraction up to 1200 or 1400 °C, depending on the stability of the polymorph. The thermal expansion is highly anisotropic for all polymorphs, with the low-expansion direction normal to the long axis of the corner-shared SiO4 tetrahedra.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aparicio, M., and Duran, A. (2000). “Yttrium Silicate Coatings for Oxidation Protection of Carbon-Silicon Carbide Composites,” J. Am. Ceram. Soc. JACTAW 83, 13511355.CrossRefGoogle Scholar
Batalieva, N. G., and Pyatenko, Y. A. (1968). “Atomic Coordinates and Interatomic Distances of the Structure of the Monoclinic Modification of Y2[Si2O7],” J. Struct. Chem. JSTCAM 9, 820-821.CrossRefGoogle Scholar
Becerro, A. I., Escudero, A., Florian, P., Massiot, D., and Alba, M. D. (2004). “Revisiting Y2Si2O7 and Y2SiO5 Polymorphic Structures by 89Y MAS-NMR spectroscopy,” J. Solid State Chem. JSSCBI 177, 27832789.CrossRefGoogle Scholar
Felsche, J. (1970). “Polymorphism and Crystal Data of the Rare-Earth Disilicates of Type R.E.2Si2O7,” J. Less-Common Met. JCOMAH 10.1016/0022-5088(70)90159-1 21, 114.CrossRefGoogle Scholar
Fukuda, K., and Matsubara, H. (2004). “Thermal Expansion of δ-Yttrium Disilicate,” J. Am. Ceram. Soc. JACTAW 87, 8992.CrossRefGoogle Scholar
Hartenbach, I., Lissner, F., and Schleid, T. (2003). “Crystal Structure of B-Type Tm2Si2O7(≡Tm4[Si3O10][SiO4]),” Z. Naturforsch., B: Chem. Sci. ZNBSEN 58, 925927.CrossRefGoogle Scholar
Huang, J.-F., Li, H.-J., Zeng, X.-R., and Li, K.-Z. (2006). “Yttrium Silicate Oxidation Protective Coating for SiC Coated Carbon/Carbon Composites,” Ceram. Int. CINNDH 32, 417421.CrossRefGoogle Scholar
ICSD (2006). “Inorganic Crystal Structure Database,” Version 2006-02, Fachinformationszentrum, Karlsruhe, Germany and The National Institute of Standards and Technology (NIST), Gaithersburg, Maryland.Google Scholar
Ito, J., and Johnson, H. (1968). “Synthesis and Study of Yttrialite,” Am. Mineral. AMMIAY 53, 19401952.Google Scholar
Kolitsch, U., Seifert, H. J., Ludwig, T., and Aldinger, F. (1999). “Phase Equilibria and Crystal Chemistry in the Y2O3-Al2O3-SiO2 system,” J. Mater. Res. JMREEE 14, 447455.CrossRefGoogle Scholar
Misture, S. T. (2003). “Large-Volume Atmosphere-Controlled High-Temperature X-ray Diffraction Furnace,” Meas. Sci. Technol. MSTCEP 10.1088/0957-0233/14/7/326 14, 10911098.CrossRefGoogle Scholar
Oliveira, M., Agathopoulos, S., and Ferreira, J. M. F. (2005). “The Influence of Y2O3-Containing Sintering Additives on the Oxidation of Si3N4-Based Ceramics and the Interfacial Interactions with Liquid Al-Alloys,” J. Eur. Ceram. Soc. JECSER 25, 1928.CrossRefGoogle Scholar
PANalytical, B. V. (2006). X’Pert HighScore Plus (Computer software), Almelo, The Netherlands.Google Scholar
Parmentier, J., Bodart, P. R., Audoin, L., Massouras, G., Thompson, D. P., Harris, R. K., Goursat, P., and Besson, J.-L. (2000). “Phase Transformations in Gel-Derived and Mixed Powder-Derived Yttrium Disilicate, Y2Si2O7, by X-Ray Diffraction and 28Si MAS NMR,” J. Solid State Chem. JSSCBI 149, 1620.CrossRefGoogle Scholar
Taghavinia, N., Lerondel, G., Makino, H., and Yao, T. (2006). “Blue- and Red-Emitting Phosphor Nanoparticles Embedded in a Porous Matrix,” Thin Solid Films THSFAP 503, 190195.CrossRefGoogle Scholar
Taguchi, S. P., and Ribeiro, S. (2004). “Silicon Nitride Oxidation Behaviour at 1000 and 1200 °C,” J. Mater. Process. Technol. JMPTEF 147, 336342.CrossRefGoogle Scholar