Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T14:23:06.778Z Has data issue: false hasContentIssue false

The structures of marialite (Me6) and meionite (Me93) in space groups P42/n and I4/m, and the absence of phase transitions in the scapolite series

Published online by Cambridge University Press:  05 March 2012

Sytle M. Antao*
Affiliation:
Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Ishmael Hassan
Affiliation:
Department of Chemistry, University of the West Indies, Mona, Kingston 7, Jamaica
*
a)Author to whom correspondence should be addressed. Electronic mail: antao@ucalgary.ca

Abstract

The crystal structures of marialite (Me6) from Badakhshan, Afghanistan and meionite (Me93) from Mt. Vesuvius, Italy were obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinements. Their structures were refined in space groups I4/m and P42/n, and similar results were obtained. The Me6 sample has a formula Ca0.24Na3.37K0.24[Al3.16Si8.84O24]Cl0.84(CO3)0.15, and its unit-cell parameters are a=12.047555(7), c=7.563210(6) Å, and V=1097.751(1) Å3. The average ⟨T1-O⟩ distances are 1.599(1) Å in I4/m and 1.600(2) Å in P42/n, indicating that the T1 site contains only Si atoms. In P42/n, the average distances of ⟨T2-O⟩=1.655(2) and ⟨T3-O⟩=1.664(2) Å are distinct and are not equal to each other. However, the mean ⟨T2,3-O⟩=1.659(2) Å in P42/n and is identical to the ⟨T2′-O⟩=1.659(1) Å in I4/m. The ⟨M-O⟩ [7]=2.754(1) Å (M site is coordinated to seven framework O atoms) and M-A=2.914(1) Å; these distances are identical in both space groups. The Me93 sample has a formula of Na0.29Ca3.76[Al5.54Si6.46O24]Cl0.05(SO4)0.02(CO3)0.93, and its unit-cell parameters are a=12.19882(1), c=7.576954(8) Å, and V=1127.535(2) Å3. A similar examination of the Me93 sample also shows that both space groups give similar results; however, the C–O distance is more reasonable in P42/n than in I4/m. Refining the scapolite structure near Me0 or Me100 in I4/m forces the T2 and T3 sites (both with multiplicity 8 in P42/n) to be equivalent and form the T2′ site (with multiplicity 16 in I4/m), but ⟨T2-O⟩ is not equal to ⟨T3-O⟩ in P42/n. Using different space groups for different regions across the series implies phase transitions, which do not occur in the scapolite series.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, B. G., Evans, H. T., and Konnert, J. A. (1984). “The crystal-structure of a synthetic meionite,” Neues Jahrb. Mineral., Abh. NJMIAK 149, 309324.Google Scholar
Antao, S. M., and Hassan, I. (2002). “Thermal behavior of scapolite M e 79.6 and M e 33.3,” Can. Mineral. CAMIA6 40, 13951401. 10.2113/gscanmin.40.5.1395CrossRefGoogle Scholar
Antao, S. M., and Hassan, I. (2008a). “Increase in Al-Si and Na–Ca disorder with temperature in scapolite M e 32.9,” Can. Mineral. CAMIA6 46, 15771591. 10.3749/canmin.46.5.1577CrossRefGoogle Scholar
Antao, S. M., and Hassan, I. (2008b). “Unusual Al-Si ordering in calcic scapolite, M e 79.6, with increasing temperature,” Am. Mineral. AMMIAY 93, 14701477. 10.2138/am.2008.2789CrossRefGoogle Scholar
Antao, S. M., Hassan, I., Wang, J., Lee, P. L., and Toby, B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite,” Can. Mineral. CAMIA6 46, 15011509. 10.3749/canmin.46.5.1501CrossRefGoogle Scholar
Belokoneva, E. L., Sokolova, N. V., and Dorokhova, G. I. (1991). “Crystal structure of natural Na, Ca-scapolite—An intermediate member of the marialite-meionite series,” Sov. Phys. Crystallogr. SPHCA6 36, 828830.Google Scholar
Belokoneva, E. L., Sokolova, N. V., and Urusov, V. S. (1993). “Scapolites-crystalline-structures of marialite (Ma11) and Meinite (Me88)-spatial group as a function of composition,” Kristallografiya KRISAJ 38, 5257.Google Scholar
Chamberlain, C. P., Docka, J. A., Post, J. E., and Burnham, C. W. (1985). “Scapolite-alkali atom configurations, antiphase domains, and compositional variations,” Am. Mineral. AMMIAY 70, 134140.Google Scholar
Comodi, P., Mellini, M., and Zanazzi, P. F. (1990). “Scapolites; variation of structure with pressure and possible role in the storage of fluids,” Eur. J. Mineral. EJMIER 2, 195202.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1992). An Introduction to the Rock-Forming Minerals, 2nd ed. (Wiley, New York).Google Scholar
Evans, B. W., Shaw, D. M., and Haughton, D. R. (1969). “Scapolite stoichiometry,” Contrib. Mineral. Petrol. CMPEAP 24, 293305. 10.1007/BF00371272CrossRefGoogle Scholar
Hassan, I., and Antao, S. M. (2010). “An Al-Si order and composition model for scapolite solid solutions with conformation form HRPXRD data,” Acta Mineralogica-Petrographica 6, 719. Google Scholar
Hassan, I., Antao, S. M., and Parise, J. B. (2004). “Sodalite: high temperature structures obtained from synchrotron radiation and Rietveld refinements,” Am. Mineral. AMMIAY 89, 359364.CrossRefGoogle Scholar
Hassan, I., and Buseck, P. R. (1988). “HRTEM characterization of scapolite solid solutions,” Am. Mineral. AMMIAY 73, 119134.Google Scholar
Hassan, I., and Grundy, H. D. (1984). “The crystal structures of sodalite-group minerals,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 40, 613. 10.1107/S0108768184001683CrossRefGoogle Scholar
Hawthorne, F. C., and Sokolova, E. (2008). “The crystal chemistry of the scapolite-group minerals. II. The origin of the I4/m←→P42/n phase transition and the nonlinear variations in chemical composition,” Can. Mineral. CAMIA6 46, 15551575. 10.3749/canmin.46.6.1555CrossRefGoogle Scholar
Larson, A. C., and Von Dreele, R. B. (2000). “General structure analysis system (GSAS),” Los Alamos National Laboratory Report No. LAUR 86-748.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. JSYRES 15, 427432. 10.1107/S0909049508018438CrossRefGoogle ScholarPubMed
Levien, L., and Papike, J. J. (1976). “Scapolite crystal chemistry: Aluminum-silicon distributions, carbonate group disorder, and thermal expansion,” Am. Mineral. AMMIAY 61, 864877.Google Scholar
Lin, S. B. (1975). “Crystal chemistry and stoichiometry of the scapolite group,” Acta Geol. Taiwanica 18, 3648.Google Scholar
Lin, S. B., and Burley, B. J. (1973a). “Crystal structure of a sodium and chlorine-rich scapolite,” Acta Crystallogr. B 29, 12721278. 10.1107/S0567740873004371CrossRefGoogle Scholar
Lin, S. B., and Burley, B. J. (1973b). “The crystal structure of meionite,” Acta Crystallogr. B 29, 20242026. 10.1107/S0567740873006011CrossRefGoogle Scholar
Lin, S. B., and Burley, B. J. (1973c). “On the weak reflections violating body-centered symmetry in scapolites,” Tschermaks Mineral. Petrogr. Mitt. 20, 2844. 10.1007/BF01082100CrossRefGoogle Scholar
Lin, S. B., and Burley, B. J. (1974). “The crystal-structure of an intermediate scapolite - wernerite,” Tschermaks Mineral. Petrogr. Mitt. 21, 196215. 10.1007/BF01081031CrossRefGoogle Scholar
Papike, J. J., and Stephenson, N. C. (1966). “The crystal structure of mizzonite, a calcium- and carbonate-rich scapolite,” Am. Mineral. AMMIAY 51, 10141027.Google Scholar
Papike, J. J., and Zoltai, T. (1965). “The crystal structure of a marialite scapolite,” Am. Mineral. AMMIAY 50, 641655.Google Scholar
Pauling, L. (1930). “The structure of some sodium and calcium alumino-silicates,” Proc. Natl. Acad. Sci. U.S.A. PNASA6 16, 453459. 10.1073/pnas.16.7.453CrossRefGoogle Scholar
Peterson, R. C., Donnay, G., and LePage, Y. (1979). “Sulfate disorder in scapolite,” Can. Mineral. CAMIA6 17, 5361.Google Scholar
Phakey, P. P., and Ghose, S. (1972). “Scapolite: Observation of anti-phase domain structure,” Nature (London), Phys. Sci. NPSCA6 238, 7880.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571. 10.1107/S0021889869006558CrossRefGoogle Scholar
Schiebold, E., and Seumel, G. (1932). “Űber die kristallstruktur von skapolith,” Z. Kristallogr. ZEKRDZ 81, 110134.CrossRefGoogle Scholar
Seto, Y., Shimobayashi, N., Miyake, A., and Kitamura, M. (2004). “Composition and I4/mP42/n phase transition in scapolite solid solutions,” Am. Mineral. AMMIAY 89, 257265.CrossRefGoogle Scholar
Sherriff, B. L., Sokolova, E. V., Kabalov, Y. K., Jenkins, D. M., Kunath-Fandrei, G., Goetz, S., Jäger, C., and Schneider, J. (2000). “Meionite: Rietveld structure-refinement, 29Si MAS and 27Al SATRAS NMR spectroscopy, and comments on the marialite-meionite series,” Can. Mineral. CAMIA6 38, 12011213. 10.2113/gscanmin.38.5.1201CrossRefGoogle Scholar
Sherriff, B. L., Sokolova, E. V., Kabalov, Y. K., Teertstra, D., Kunath-Fandrei, G., Goetz, S., and Jäger, C. (1998). “Intermediate scapolite: 29Si MAS and 27Al SATRAS NMR spectroscopy and Rietveld structure-refinement,” Can. Mineral. CAMIA6 36, 12671283.Google Scholar
Sokolova, E., and Hawthorne, F. C. (2008). “The crystal chemistry of the scapolite-group minerals. I. Crystal structure and long-range order,” Can. Mineral. CAMIA6 46, 15271554. 10.3749/canmin.46.6.1527CrossRefGoogle Scholar
Sokolova, E. V., Gobechiya, E. R., Zolotarev, A. A., and Kabalov, Y. K. (2000). “Refinement of the crystal structures of two marialites from the Kukurt deposit of the east Pamirs,” Crystallogr. Rep. CYSTE3 45, 934938. 10.1134/1.1327654CrossRefGoogle Scholar
Sokolova, E. V., Kabalov, Y. K., Sherriff, B. L., Teertstra, D. K., Jenkins, D. M., Kunath-Fandrei, G., Goetz, S., and Jäger, C. (1996). “Marialite: Rietveld structure-refinement and 29Si MAS and 27Al satellite transition NMR spectroscopy,” Can. Mineral. CAMIA6 34, 10391050.Google Scholar
Teertstra, D. K., Schindler, M., Sherriff, B. L., and Hawthorne, F. C. (1999). “Silvialite, a new sulfate-dominant member of the scapolite group with an Al-Si composition near the I4/mP42/n phase transition,” Mineral. Mag. 63, 321329. 10.1180/002646199548547CrossRefGoogle Scholar
Teertstra, D. K., and Sherriff, B. L. (1996). “Scapolite cell-parameter trends along the solid-solution series,” Am. Mineral. AMMIAY 81, 169180.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. JACGAR 34, 210213. 10.1107/S0021889801002242CrossRefGoogle Scholar
Ulbrich, H. H. (1973a). “Crystallographic data and refractive indices of scapolites,” Am. Mineral. AMMIAY 58, 8192.Google Scholar
Ulbrich, H. H. (1973b). “Structural refinement of the Monte Somma scapolite, a 93% meionite,” Tschermaks Mineral. Petrogr. Mitt. 53, 385393. Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: Commissioning and early operational results,” Rev. Sci. Instrum. RSINAK 79, 085105. 10.1063/1.2969260CrossRefGoogle ScholarPubMed
Zolotarev, A. A. (1996). “Once more on isomorphic schemes and isomorphic series in the scapolite group,” Zap. Vses. Mineral. O-va. ZVMOAG 125, 6973.Google Scholar
Zolotarev, A. A., Petrov, T. G., and Moshkin, S. V. (2003). “Peculiarities of chemical compositions of the scapolite group minerals,” Zap. Vses. Mineral. O-va. ZVMOAG 132, 6384.Google Scholar