Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:01:45.102Z Has data issue: false hasContentIssue false

Synthesis and crystal structure of the novel metal organic framework Zn(C3H5NO2S)2

Published online by Cambridge University Press:  09 September 2014

P. Ferrer*
Affiliation:
SpLine-BM25, ESRF (European Synchrotron Radiation Facility), 6 rue Jules Horowitz, 38000 Grenoble, France ICMM-CSIC (Instituto de Ciencia de Materiales de Madrid), 28049 Cantoblanco, Madrid, Spain Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
I. da Silva
Affiliation:
SpLine-BM25, ESRF (European Synchrotron Radiation Facility), 6 rue Jules Horowitz, 38000 Grenoble, France ICMM-CSIC (Instituto de Ciencia de Materiales de Madrid), 28049 Cantoblanco, Madrid, Spain ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
J. Rubio-Zuazo
Affiliation:
SpLine-BM25, ESRF (European Synchrotron Radiation Facility), 6 rue Jules Horowitz, 38000 Grenoble, France ICMM-CSIC (Instituto de Ciencia de Materiales de Madrid), 28049 Cantoblanco, Madrid, Spain
G. R. Castro
Affiliation:
SpLine-BM25, ESRF (European Synchrotron Radiation Facility), 6 rue Jules Horowitz, 38000 Grenoble, France ICMM-CSIC (Instituto de Ciencia de Materiales de Madrid), 28049 Cantoblanco, Madrid, Spain
*
a) Author to whom correspondence should be addressed. Electronic mail: pilar.ferrer-escorihuela@diamond.ac.uk

Abstract

The crystal structure of the novel metal organic framework (MOF) Zn(C3H5NO2S)2 is described. This MOF can serve as a model for active sites in metalloproteins, on diverse activities such as structural or catalytic functions. Each half of the amino acid act as a bidentate ligand to one Zn and as a monodentate ligand to another Zn, while the disulphide bond presents an important structural function, stabilizing the crystal packing. The structure has been obtained ab initio from synchrotron X-ray powder diffraction data. The compound crystallizes in the orthorhombic system (space group P212121), with a = 20.0906(7), b = 9.5842(3), c = 5.018 89(13), and V = 966.40(5) Å3, with Z = 4. The structure was determined using a direct space approach, by means of the Monte Carlo technique, followed by Rietveld refinement.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B 58, 380388.Google Scholar
Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G. and Rizzi, R. (2004). “Automatic structure determination from powder data with EXPO2004,” J. Appl. Crystallogr. 37, 10251028.Google Scholar
Altomare, A., Camalli, M., Cuocci, C., da Silva, I., Giacovazzo, C., Moliterni, A. G. G. and Rizzi, R. (2005). “Space group determination: improvements in EXPO2004,” J. Appl. Crystallogr. 38, 760767.CrossRefGoogle Scholar
Anbuchezhiyan, M., Ponnusamy, S. and Muthamizhchelvan, C. (2010). “Crystal growth and characterizations of l-cystine dihydrobromide—a semiorganic nonlinear optical material,” Physica B: Condens. Matter 405, 11191124.Google Scholar
Auld, D. S. (2001). “Zinc coordination sphere in biochemical zinc sites,” BioMetals 14, 271313.Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.Google Scholar
De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H. (2009). “OLEX2: a complete structure solution, refinement and analysis program,” J. Appl. Crystallogr. 42, 339341.Google Scholar
Faggiani, R., Howard-Lock, H. E., Lock, C. J. L., Martins, M. L. and Smalley, P. S. (1984). “Structural and spectroscopic studies of dipotassium 3,3,3′,3′-tetramethylcystinate trihydrate, K2[C10H18N2O4S2]3H2O,” Can. J. Chem. 62, 11271133.Google Scholar
Favre-Nicolin, V. and Cerný, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Ferrer, P., Rubio-Zuazo, J. and Castro, G. R. (2013). “Study of solid/liquid and solid/gas interfaces in Cu–isoleucine complex by surface X-Ray diffraction,” Appl. Surf. Sci. 267, 124127.CrossRefGoogle Scholar
Ferrer, P., Jimenez-Villacorta, F., Rubio-Zuazo, J., da Silva, I. and Castro, G. R. (2014). “Environmental influence on Zn − histidine complexes under No-Packing Conditions,” J. Phys. Chem. B 118, 28422850.Google Scholar
Finger, L. W., Cox, D. E. and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27, 892900.Google Scholar
Gomis-Rüth, F. X. (2003). “Structural aspects of the metzincin clan of metalloendopeptidases,” Mol. Biotechnol. 24, 157202.CrossRefGoogle ScholarPubMed
Holm, R. H., Kennepohl, P. and Solomon, E. I. (1996). “Structural and functional aspects of metal sites in biology,” Chem. Rev. 96, 22392314.Google Scholar
Lehninger, A. L. (1972). Biochemistry: The Molecular Basis of Cell Structure and Function (Worth Publishers, New York, NY).Google Scholar
Louër, D. and Boultif, A. (2007). “Powder pattern indexing and the dichotomy algorithm,” Z. Kristallogr. Suppl. 26, 191196.Google Scholar
Menger, F. M. and Caran, K. L. (2000). “Anatomy of a Gel. Amino Acid derivatives that rigidify water at submillimolar concentrations,” J. Am. Chem. Soc. 122, 1167911691.Google Scholar
Oughton, B. M. and Harrison, P. M. (1959). “The crystal structure of hexagonal L-cystine,” Acta Crystallogr. 12, 396404.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” Commun. Powder Diffr. (IUCr) Newslett. 26, 1219.Google Scholar
Roisnel, T. and Rodriguez-Carvajal, J. (2001). “WinPLOTR: a Windows tool for powder diffraction patterns analysis,” Mater. Sci. Forum 378–381, 118–123.Google Scholar
Seko, H., Tsuge, K., Igashira-Kamiyama, A., Kawamoto, T. and Konno, T. (2010). “Autoxidation of thiol-containing amino acid to its disulfide derivative that links two copper(II) centers: the important role of auxiliary ligand,” Chem. Commun. 46, 19621964.Google Scholar
Sigel, H. and Martin, R. B. (1982). “Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands,” Chem. Rev. 82, 385426.CrossRefGoogle Scholar
Thich, J. A., Mastropaolo, D., Potenza, J. and Schugar, H. J. (1974). “Crystal and molecular structure of bis[copper(II) D-penicillamine disulfide] nonahydrate, a derivative of copper(II) cystinate,” J. Am. Chem. Soc. 96, 726731.Google Scholar
Thompson, P., Cox, D. E. and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20, 7983.Google Scholar
Tucker, P. A. (1979). “The structure of (1,2,3-triamino-1,3-diimino-2-methylpropane) triamminecobalt(III) tribomide 2/3-hydrate,” Acta Crystallogr., B: Struct. Crystallogr. Cryst. Chem. 35, 7175.Google Scholar
Vahrenkamp, H. V. (2007). “Why does nature use zinc – a personal view,” Dalton Trans. 42, 47514759.Google Scholar