Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T08:59:13.722Z Has data issue: false hasContentIssue false

Synthesis and Unit Cell Parameter Refinement of 25 Tungsten Bronze Ferroelectrics

Published online by Cambridge University Press:  10 January 2013

Lauren A. Zellmer
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
Deane K. Smith
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
Diane Nelson
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
Barry E. Scheetz
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.

Abstract

Synthesis and unit cell parameter refinement of 25 ferroelectric compounds with the tungsten bronze structure are reported. A general chemical formula for these compounds is (A1, A2, C) B10 O30, where specifically A1 and A2 = K, Na, Ba, Sr, Pb, La, Eu, Sm, Y, Bi; C = Li; and B = Nb, Ta, Ti, W. All compounds were prepared by solid state sintering at temperatures ranging from 1100°C to 1380°C. Refined cell parameters (tetragonal with space group P4bm[100]), I/Icor values, calculated densities and Z values are included for the 25 compounds.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainger, F. W., Bickley, W. P. and Smith, G. V. (1970). Proc. Br. Ceram. Soc. 18, 221.Google Scholar
Appleman, D. E. & Evans, H. T. Jr. (1973). Report PB 216118, U. S. Dept. of Commerce National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22151.Google Scholar
Mitsui, T. & Nonura, S. (1981). In Numerical Data and Functional Relationships in Science and Technology, ed.-in-chief Hellwege, K. H., 16. Ferroelectrics and Related Substances, subvolume 9; Oxides. New York: Springer-Verlag.Google Scholar
Ikeda, T., Haraguchi, T., Onodera, Y. & Saito, T. (1971). Jpn. J. Appl. Phys. 10, 987994.CrossRefGoogle Scholar
Ikeda, T.Uno, K., Oyamada, K., Sagara, A., Kato, J., Takano, S. & Sato, H. (1978). Jpn. J. Appl. Phys. 17, 341348.CrossRefGoogle Scholar
Itoh, Y. & Iwasaki, H. (1973). J. Phys. Chem. Solids 34, 16391645.CrossRefGoogle Scholar
Iwasaki, H. (1971). Mater. Res. Bull. 6, 251260.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R. & Stalick, J. K. (1981). NBS*AIDS80, A FORTRAN Program for Crystallographic Data Evaluation. NBS (U.S.) Tech. Note 1141. U.S. Dept. of Commerce, Nat'l. Bur. Stand., Gaithersburg, Md 20899.Google Scholar
NBS SRM 640a (1982). Replaced by Standard Reference Material 640b, Silicon Powder X-Ray Diffraction Standard (1987). Obtainable from the National Bureau of Standards, Office of Standard Reference Material, Gaithersburg, MD 20899.Google Scholar
Pouchard, M., Chaminade, J.-P., Perron, A., Ravez, J. & Hagenmuller, P. (1975). J. Solid State Chem. 14, 274282.CrossRefGoogle Scholar
Ravez, J., Budin, J.-P., & Hagenmuller, P. (1972). J. Solid State Chem. 5, 239246.CrossRefGoogle Scholar
Ravez, J., Perron, A., Chaminade, J.-P., Hagenmuller, P. & Rivoallan, L. (1974). J. Solid State Chem. 10, 274281.CrossRefGoogle Scholar
Scott, B. A., Giess, E. A., Burns, G. & O'Kane, D. F. (1968). Mater. Res. Bull. 3, 831842.CrossRefGoogle Scholar
Stephenson, N. C. (1965). Acta Crystallogr. 18, 496.CrossRefGoogle Scholar
Van Uitert, L. G., Rubin, J. J., Grodkiewicz, W. H. & Bonner, W. A. (1969). Mater. Res. Bull. 4, 6374.CrossRefGoogle Scholar
Visser, J. W. (1969). J. Appl. Crystallogr. 2, 8995.CrossRefGoogle Scholar
Wang-t'yau, C., Krainik, N. N., Isupov, V. A., Ismailzade, I. G., Myl'nikova, I. E., Agaev, F. A. & Volkova, L. S. (1972). Sov. Phys. Crystallogr. (Engl. Transl.) 17, 107111.Google Scholar