Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T23:08:41.111Z Has data issue: false hasContentIssue false

Synthesis, crystal structure and vibrational spectra of Sr0.5Zr2(AsO4)3

Published online by Cambridge University Press:  29 February 2012

A. Jrifi
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Men M’Sik, Université Hassan II-Mohammedia, Avenue Idriss El Harti, Casablanca, Morocco
A. El Jazouli
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Men M’Sik, Université Hassan II-Mohammedia, Avenue Idriss El Harti, Casablanca, Morocco
J. P. Chaminade
Affiliation:
CNRS, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université Bordeaux, 87 Avenue Albert Schweitzer, 33608 Pessac, France
M. Couzi*
Affiliation:
Institut des Sciences Moléculaires, Université Bordeaux 1, CNRS UMR 5255, Batiment A12, 351 cours de la libération, 33405 Talence Cedex, France
*
a)Author to whom correspondence should be addressed. Electronic mail: eljazouli_abdelaziz@yahoo.fr

Abstract

Sr0.5Zr2(AsO4)3 arsenate was prepared and structurally characterized by powder X-ray diffraction and by Raman and infrared spectroscopies. Its structure, which belongs to the Nasicon-type family, was refined by the Rietveld method in the R-3 space group, from X-ray powder diffraction data. The hexagonal unit-cell parameters were determined to be ah=8.965(2) Å, ch=23.955(6) Å, V=1667.43(6) Å3, and Z=6. The structure is formed by an ionic three-dimensional network of AsO4 tetrahedra and ZrO6 octahedra linked by corners with Sr2+ ions occupying half of the M1 sites in an ordered manner. Raman and infrared spectra were recorded and assignments of the stretching and bending vibrations of the AsO43− tetrahedra were made. The number of the peaks observed is in good agreement with that predicted by the factor-group analysis of the R-3 space group.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A., Delmas, C., and El Jazouli, A. (2001). “Structural and electrochemical study of Li0.5Mn0.5Ti1.5Cr0.5(PO4)3,” J. Solid State Chem. JSSCBI 158, 169174. 10.1006/jssc.2001.9088CrossRefGoogle Scholar
Brese, N. E. and O’Keeffe, M. (1991). “Band valence parameters for solids,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 47, 192197. 10.1107/S0108768190011041CrossRefGoogle Scholar
Brian, L., Cushing, B. L., and Goodenough, J. B. (2001). “Li2NaV2(PO4)3: A 3.7 V lithium-insertion cathode with the rhombohedral NASICON structure,” J. Solid State Chem. JSSCBI 162, 176181. 10.1006/jssc.2001.9213Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 41, 244247. 10.1107/S0108768185002063CrossRefGoogle Scholar
Bussereau, I., Olazcuaga, R., Dance, J. M., Delmas, C., Le Flem, G., and El Jazouli, A. (1992). “Lithium intercalation in Cu0.5IITi2(PO4)3,” J. Alloys Compd. JALCEU 188, 110112. 10.1016/0925-8388(92)90654-RCrossRefGoogle Scholar
Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. NUINAO 3, 223228. 10.1016/0369-643X(58)90029-XGoogle Scholar
Chakir, M., El Jazouli, A., and de Waal, D. (2003). “Structural and vibrational studies of NaZr2(AsO4)3,” Mater. Res. Bull. MRBUAC 38, 17731779. 10.1016/S0025-5408(03)00104-1CrossRefGoogle Scholar
Cherkaoui, F., Viala, J. C., Delmas, C., and Hagenmuller, P. (1986). “Crystal chemistry and ionic conductivity of a new Nasicon-related solid solution Na1+xZr2−x/2Mgx/2(PO4)3,” Solid State Ion. 21, 333337. 10.1016/0167-2738(86)90195-5 CrossRefGoogle Scholar
Delmas, C., Nadiri, A., and Soubeyroux, J. L. (1988). “The nasicon-type titanium phosphates ATi2(PO4)3 (A=Li,Na) as electrode material,” Solid State Ion. 28–30, 419423. 10.1016/S0167-2738(88)80075-4 CrossRefGoogle Scholar
Dowty, E. (1997). ATOMS 3.2. A Computer Program for Displaying Atomic Structures (Kingsport, Tennessee).Google Scholar
El Brahimi, M. and Durand, J. (1990). “Structure cristalline de l'arseniate double de potassium et de zirconium: KZr2(AsO4)3,” Z. Anorg. Allg. Chem. ZAACAB 584, 178184. 10.1002/zaac.19905840119CrossRefGoogle Scholar
Fischer, W., Singheiser, L., Basu, D., and Dasgupta, A. (2004). “Crystal structure of Ca1−xSrxZr4(PO4)6, (0≤x≤1),” Powder Diffr. PODIE2 19, 153156. 10.1154/1.1643051CrossRefGoogle Scholar
Goodenough, J. B., Hong, H. Y. P., and Kafalas, J. A. (1976). “Fast Na+-ion transport in skeleton structures,” Mater. Res. Bull. MRBUAC 11, 203220. 10.1016/0025-5408(76)90077-5Google Scholar
Hagman, L. O. and Kierkegaard, P. (1968). “The crystal structure of NaMeIV(PO4)3, MeIV=Ge,Ti,Zr,” Acta Chem. Scand. ACHSE7 22, 18221832. 10.3891/acta.chem.scand.22-1822CrossRefGoogle Scholar
Harrison, W. T. A. and Philips, M. L. F. (2001). “Sodium scandium arsenate, Na3Sc2(AsO4)3,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 57, 2–3. 10.1107/S010827010001372XGoogle Scholar
Hong, H. Y.-P. (1976). “Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12,” Mater. Res. Bull. MRBUAC 11, 173182. 10.1016/0025-5408(76)90073-8CrossRefGoogle Scholar
Khorari, S., Rulmont, A., and Tarte, P. (1997). “Alluaudite-like structure of the arsenate Na3In2(AsO4)3,” J. Solid State Chem. JSSCBI 134, 3137. 10.1006/jssc.1997.7526Google Scholar
Krimi, S., El Jazouli, A., Lachgar, A., Rabardel, L., de Waal, D., and Ramos-Barrado, J. R. (2000). “Glass-crystal transformation of Na5−2xCaxTi(PO4)3 phosphates,” Ann. Chim. (Paris) ANCPAC 25, S75–S78.Google Scholar
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na5Ti(PO4)3,” J. Solid State Chem. JSSCBI 105, 561566. 10.1006/jssc.1993.1248CrossRefGoogle Scholar
Lii, K. and Ye, H. J. (1997). “Hydrothermal synthesis and structures of Na3In2(PO4)3 and Na3In2(AsO4)3: Synthetic modifications of the mineral alluaudite,” J. Solid State Chem. JSSCBI 131, 131137. 10.1006/jssc.1997.7365CrossRefGoogle Scholar
Masquelier, C., d’Yvoire, F., and Collin, G. (1995). “Crystal structure of Na7Fe4(AsO4)6 and α-Na3Al2(AsO4)3, two sodium ion conductors structurally related to II-Na3Fe2(AsO4)3,” J. Solid State Chem. JSSCBI 118, 3342. 10.1006/jssc.1995.1307Google Scholar
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B. (1998). “New cathode materials for rechargeable lithium batteries: The 3D framework structures Li3Fe2(XO4)3 (X=P,As),” J. Solid State Chem. JSSCBI 135, 228234. 10.1006/jssc.1997.7629CrossRefGoogle Scholar
Masse, R., Durif, A., Guitel, J. C., and Tordjmman, I. (1972). “Crystal structure of the lacunary monophosphate potassium titanium triphosphate: Lacunary monophosphates niobium germanium triphosphate and M5+Ti(PO4)3 where M5+=antimony, niobium, tantalum,” Bull. Soc. Fr. Mineral. Cristallogr. BUFCAE 95, 4755.Google Scholar
Mazza, D., Lucco-Borlera, M., and Ronchetti, S. (1998). “Powder diffraction study of arsenic-substituted nasicon structures MeZr2As(3−x)PxO12 (Me=Na+,K+),” Powder Diffr. PODIE2 13, 227231.CrossRefGoogle Scholar
Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed (Wiley, New York).Google Scholar
Rodrigo, J. L., Carrasco, P., and Alamo, J. (1989). “Thermal expansion of NaTi2(PO4)3 studied by Rietveld method from X-ray diffraction data,” Mater. Res. Bull. MRBUAC 24, 611618. 10.1016/0025-5408(89)90109-8CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1990). “FullProf: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 32, 751767. 10.1107/S0567739476001551CrossRefGoogle Scholar
Winand, J. M., Rulmont, A., and Tarte, P. (1990). “Synthèse et étude de nouveaux arséniates (M I)3(N III)2(AsO4)3 et de solutions solides (M I)3(N III)2(AsO4)x(PO4)3−x (M=Li,Na; N=Fe,Sc,In,Cr),” J. Solid State Chem. JSSCBI 87, 8394. 10.1016/0022-4596(90)90068-9Google Scholar
Yaakoubi, A., Jouini, T., and Jouini, N. (1991). “Preparation and radiocrystallographic data of two new families of titanium arsenates A ITi2(AsO4)3 (A=lithium, sodium, silver, potassium) and A 0.5II Ti2(AsO4)3 (A=magnesium, calcium, strontium),” Acad. Sci., Paris, C. R. COREAF 312, 451453.Google Scholar