Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T20:56:49.771Z Has data issue: false hasContentIssue false

Thermodiffractometry and crystal structures of the hexagonal-tungsten-bronze-related K3Al3F12nH2O (n=2,1)

Published online by Cambridge University Press:  29 February 2012

A. Le Bail*
Affiliation:
Laboratoire des Oxydes et Fluorures, CNRS UMR 6010, Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France
*
a)Electronic mail: armel.le_bail@univ-lemans.fr

Abstract

K3Al3F12nH2O (n=2,1) are the successive products of the thermal decomposition of K(H3O)2AlF6. Both structures are orthorhombic, built up from disconnected hexagonal-tungsten-bronze (HTB)-related layers, with K+ cations and H2O molecules inserted between. For n=2, there are two disconnected layers along a presenting different octahedra tilting [a=13.5135(2) Å, b=7.0433(1) Å, c=12.2252(2) Å, V=1163.60(3) Å3, Z=4, space group Pnma], whereas for n=1, the stacking is reduced to only one HTB layer along c [a=7.0523(5) Å, b=12.1005(9) Å, c=6.7057(5) Å, V=572.24(7) Å3 (at 170 °C), Z=2, space group Pmmn] after the departure of one water molecule. The thermodiffractometry ends in the α-KAlF4 form.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bentrup, U. and Kolditz, L. (1986). “Über die thermolyse von K2HAlF6,” Z. Anorg. Allg. Chem.ZAACAB 540, 814.10.1002/zaac.19865400903CrossRefGoogle Scholar
Bentrup, U. and Kolditz, L. (1988). “Synthesis and thermal decomposition of acid alkali metal hexafluoroaluminates,” J. Therm. Anal.JTHEA9 34, 14131420.10.1007/BF01914365CrossRefGoogle Scholar
Courbion, G., Jacoboni, C., and De Pape, R. (1976). “La structure cristalline de Cs2NaAl3F12,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 32, 31903193.10.1107/S0567740876009928CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr.JACGAR 1, 108113.10.1107/S002188986800508XCrossRefGoogle Scholar
Frenzen, G. and Massa, W. (1990). “Kalium-dioxonium-hexafluoroaluminat,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE 46, 190192.10.1107/S0108270189006529CrossRefGoogle Scholar
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo analysis of powder diffraction data,” Mater. Sci. ForumMSFOEP 378–381, 6570.10.4028/www.scientific.net/MSF.378-381.65Google Scholar
Le Bail, A. (2004). “Monte Carlo indexing with MCMAILLE,” Powder Diffr.PODIE2 19, 249254.10.1154/1.1763152Google Scholar
Le Bail, A. (2005). “Whole powder pattern decomposition methods and applications: A retrospection,” Powder Diffr.PODIE2 20, 316326.10.1154/1.2135315CrossRefGoogle Scholar
Le Bail, A. (2008). Principles and Applications of Powder Diffraction, edited by Clearfield, A., Reibenspies, J., and Bhuvanesh, N. (Wiley, New York), pp. 261309.Google Scholar
Le Bail, A. (2009). “Ab initio structure determination of nano-sized θ-KAlF4 with edge-sharing AlF6 octahedra,” Powder Diffr.PODIE2 24, 185190.10.1154/1.3194692CrossRefGoogle Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1992). “Crystal structure of K2(H5O2)Al2F9,” J. Solid State Chem.JSSCBI 98, 151158.10.1016/0022-4596(92)90081-6Google Scholar
Le Bail, A., Gao, Y., Fourquet, J. L., and Jacoboni, C. (1990). “Structure determination of A 2NaAl3F12 (A=Rb, Cs),” Mater. Res. Bull.MRBUAC 25, 831839.10.1016/0025-5408(90)90059-BCrossRefGoogle Scholar
Le Bail, A., Gao, Y., and Jacoboni, C. (1989). “Crystal structure of Rb2NaAl6F21: A new term of the A 2Na(AlxF3x+1)3 family (A=K, Rb),” Eur. J. Solid State Inorg. Chem.EJSCE5 26, 281288.Google Scholar
Le Bail, A., Jacoboni, C., Leblanc, M., De Pape, R., Duroy, H., and Fourquet, J. L. (1988). “Crystal structure of the metastable form of aluminum trifluoride β-AlF3 and the gallium and indium homologs,” J. Solid State Chem.JSSCBI 77, 96101.10.1016/0022-4596(88)90095-3CrossRefGoogle Scholar
Nouet, J., Pannetier, J., and Fourquet, J. L. (1981). “The room-temperature structure of potassium tetrafluoroaluminate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 37, 3234.10.1107/S0567740881002136CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica BPHYBE3 192, 5569.10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr.JACGAR 12, 6065.10.1107/S002188987901178XGoogle Scholar