Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T14:45:01.719Z Has data issue: false hasContentIssue false

Variance and centroid optimization in X-ray powder diffraction analysis

Published online by Cambridge University Press:  10 January 2013

G. Berti
Affiliation:
Dipartimento Di Scienze Della Terra, Universita' Di Pisa, Via S. Maria 53-56100 Pisa, Italy

Abstract

Line profiles of a powder diffraction pattern and the aberrations which affect the centroid and the variances of the peaks have been analyzed using the visualization in scientific computing (ViSC) systems. The constrained optimization of those aberrations has been derived from the theory developed by Wilson (1963). It allows the determination of systematic instrumental effects and gives indication of other diffraction effects related to the samples. The CuKβ radiation was used to process the experimental data directly as it is comprised of only one single wavelength.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azaroff, I. V., Kaplow, R., Kato, N., Weiss, R. J., Wilson, A. J. C., and Young, R. A. (1974). X-Ray Diffraction (McGraw-Hill, New York).Google Scholar
Baharie, E., and Pawley, G. S. (1983). J. Appl. Crystallogr. 16, 404406.CrossRefGoogle Scholar
Berti, G., and Carrara, R. (1988). Periodico di Min. 57, 59.Google Scholar
Berti, G., Carrara, R., and Leoni, L. (1984). Rend. Soc. It. Miner. Petrog. 39, (1), 115122.Google Scholar
Berti, G., and Palamidese, P. (1990). Pow. Diff. 5, 186191.CrossRefGoogle Scholar
Delhez, R., DeKeijser, T. H., and Mittemeijer, E. J. (1986). J. Appl. Crystallogr. 19, 459466.CrossRefGoogle Scholar
Eadie, W. T., Drijard, D., James, F. E., Roos, M., and Saudoulet, B. (1982). Statistical Methods in Experimental Physics (North Holland, Amsterdam).Google Scholar
Edwards, H. J., and Langford, J. I. (1971). J. Appl. Crystallogr. 4, 4350.CrossRefGoogle Scholar
Fletcher, R. (1970). Computing J. 13, 317320.CrossRefGoogle Scholar
International Tables (1962). International Tables for X-Ray Cryst., Vol. 3 (Kynoch Press, Birmingham, England), p. 162.Google Scholar
Langford, J. I. (1982). J. Appl. Crystallogr. 16, 183191.Google Scholar
Langford, J. I. and Wilson, A. J. C. (1963). Proc. of Symp. on “Crystallography and Crystal Perfection,” Madras, 207222.Google Scholar
Louër, D., Auffredic, J. P., Langford, J. I., Ciosmak, D., and Niepce, J. C. (1983). J. Appl. Crystallogr. 16, 183191.CrossRefGoogle Scholar
Klug, H. P, and Alexander, L. E. (1974). X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York).Google Scholar
Nelder, J. A., and Mead, R. (1965). Computing J. 7, 308316.CrossRefGoogle Scholar
Jansen, E., Schafer, W., and Will, G., (1988). J. Appl. Crystallogr. 21, 228239.CrossRefGoogle Scholar
Jansson, P. A. (1984). Deconvolution (Academic, New York).Google Scholar
J.C.P.D.S. (1982) PDF Card 3340.CrossRefGoogle Scholar
Suortti, P., and Jennings, L. D., (1971). J. Appl. Crystallogr. 4, 3743.CrossRefGoogle Scholar
Toraya, H. (1985). J. Appl. Crystallogr. 18, 351358.CrossRefGoogle Scholar
Young, R. A., Gerdes, R. J., and Wilson, A. J. C. (1967). Acta Crystallogr. 22, 155162.CrossRefGoogle Scholar
Wilson, A. J. C. (1963). The Mathematical Theory of Powder Diffractometry (Philips Techn. Lib. Eindhoven, The Netherlands).Google Scholar