Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T17:20:40.819Z Has data issue: false hasContentIssue false

X-ray diffraction imaging for predictive metrology of crack propagation in 450-mm diameter silicon wafers

Published online by Cambridge University Press:  19 April 2013

B.K. Tanner*
Affiliation:
Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
J. Wittge
Affiliation:
University of Freiburg, Kristallographie, Geowissenschaftliches Institut, Freiburg, Germany
P. Vagovič
Affiliation:
Karlsruhe Institute of Technology, Institut für Synchrotronstrahlung, Karlsruhe, Germany
T. Baumbach
Affiliation:
Karlsruhe Institute of Technology, Institut für Synchrotronstrahlung, Karlsruhe, Germany
D. Allen
Affiliation:
Dublin City University, School of Electronic Engineering, Dublin 9, Ireland
P.J. McNally
Affiliation:
Dublin City University, School of Electronic Engineering, Dublin 9, Ireland
R. Bytheway
Affiliation:
Jordan Valley Semiconductors UK Ltd, Durham DH1 1TW, UK
D. Jacques
Affiliation:
Jordan Valley Semiconductors UK Ltd, Durham DH1 1TW, UK
M.C. Fossati
Affiliation:
Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
D.K. Bowen
Affiliation:
Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
J. Garagorri
Affiliation:
CEIT and Tecnun (University of Navarra), 20018 San Sebastián, Spain
M.R. Elizalde
Affiliation:
CEIT and Tecnun (University of Navarra), 20018 San Sebastián, Spain
A.N. Danilewsky
Affiliation:
University of Freiburg, Kristallographie, Geowissenschaftliches Institut, Freiburg, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: b.k.tanner@dur.ac.uk

Abstract

The apparatus for X-ray diffraction imaging (XRDI) of 450-mm wafers, is now placed at the ANKA synchrotron radiation source in Karlsruhe, is described in the context of the drive to inspect wafers for plastic deformation or mechanical damage. It is shown that full wafer maps at high resolution can be expected to take a few hours to record. However, we show from experiments on 200-, 300-, and 450-mm wafers that a perimeter-scan on a 450-mm wafer, to pick up edge damage and edge-originated slip sources, can be achieved in just over 10 min. Experiments at the Diamond Light Source, on wafers still in their cassettes, suggest that clean-room conditions may not be necessary for such characterization. We conclude that scaling up of the 300-mm format Jordan Valley tools, together with the existing facility at ANKA, provides satisfactory capability for future XRDI analysis of 450-mm wafers.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, T. (2008). “Realizing the 450 mm transition,” Solid State Technol. 51, 2230.Google Scholar
Betz, O., Rack, A., Schmitt, C., Ershov, A., Dieterich, A., Körner, L., Ershov, A., and Baumbach, T. (2008). “High speed X-ray cineradiography for analyzing complex kinematics of living insects,” Synchrotron Radiat. News 21, 34.CrossRefGoogle Scholar
Borucki, L., Philipossian, A., and Goldstein, M. (2009). “An analysis of potential 450 mm CMP tool scaling questions,” Solid State Technol. 52, 10.Google Scholar
Bonse, U., and Busch, F. (1996). “X-ray computed microtomography (mu CT) using synchrotron radiation (SR),” Prog. Biophys. Mol. Biol. 65, 133169.CrossRefGoogle Scholar
Bowen, D. K. and Tanner, B. K. (2006). X-ray Metrology in Semiconductor Manufacturing (CRC Taylor and Francis, Bocca Raton).Google Scholar
Bowen, D. K., Wormington, M., and Feichtinger, P. (2003). “A novel digital X-ray topography system,” J. Phys. D 36, A17–23.CrossRefGoogle Scholar
Chien, C. F., Wang, J. K., Chang, T. C., and Wu, W. C. (2007). “Economic analysis of 450 mm wafer migration,” Proc. Int. Symp. on Semiconductor Manufacturing, p. 283286.Google Scholar
Danilwesky, A. N., Wittge, J., Rack, A., Weitkamp, T., Simon, R., Baumbach, T., and McNally, P. J. (2008a). “White beam topography of 300 mm Si wafers”, J. Mater. Sci. – Mater. Electron. 19, S269S272.CrossRefGoogle Scholar
Danilewsky, A. N., Rack, A., Wittge, J., Weitkamp, T., Simon, R., Riesemeier, H., and Baumbach, T. (2008b). “White beam synchrotron topography using a high resolution digital X-ray imaging detector,” Nucl. Instrum. Methods Phys. B, 266, 20352040.CrossRefGoogle Scholar
Danilewsky, A. N., Wittge, J., Hess, A., Cröll, A., Rack, A., dos Santos Rolo, T., Allen, D., McNally, P., Vagovič, P., Li, Z., Baumbach, T., Gorostegui-Colinas, E., Garagorri, J., Elizalde, M. R., Jacques, D., Fossati, M. C., Bowen, D. K., and Tanner, B. K. (2011). “Real time X-ray diffraction imaging for semiconductor wafer metrology and high temperature in-situ experiments,” Phys. Status Solidi a 208, 24992504.CrossRefGoogle Scholar
Garagorri, J., Elizalde, M. R., Fossati, M. C., Jacques, D., and Tanner, B. K. (2012). “Slip band distribution in rapid thermally annealed silicon wafers,” J. Appl. Phys. 111, 094901.CrossRefGoogle Scholar
Hartmann, W., Markewitz, G., Rettenmaier, U., and Queisser, H. J. (1975). “High-resolution direct-display X-ray topography,” Appl. Phys. Lett. 27, 308309.CrossRefGoogle Scholar
Jones, S. W. (2009). “300 mm Prime and the prospect for 450 mm wafers,” Solid State Technol. 52, 1415.Google Scholar
Nagornaya, L., Onyshchenko, G., Pirogov, E., Starzhinskiy, N., Tupitsyna, I., Ryzhikov, V., Galich, Y., Vostretsov, Y., Galkin, S., and Voronkin, E. (2005). “Production of the high-quality CdWO4 single crystals for application in CT and radiometric monitoring,” Nucl. Instrum. Methods Phys. Res. A 537, 163167.CrossRefGoogle Scholar
Rack, A., Zabler, S., Müller, B. R., Riesemeier, H., Weidemann, G., Lange, A., Goebbels, J., Hentschel, M., and Görner, W. (2008). “High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res. A 586, 327344.CrossRefGoogle Scholar
Rack, A., Weitkamp, T., Bauer Trabelsi, S., Modregger, P., Cecilia, A., dos Santos Rolo, T., Rack, T., Haas, D., Simon, R., Heldele, R., Schulz, M., Mayzel, B., Danilewsky, A. N., Waterstradt, T., Diete, W., Riesemeier, H., Müller, B. R., and Baumbach, T. (2009). “The micro-imaging station of the TopoTomo beamline at the ANKA synchrotron light source,” Nucl. Instrum. Methods Phys. Res. B 267, 19781988.CrossRefGoogle Scholar
Simon, R. and Danilewsky, A. N. (2003). “The experimental station for white beam X-ray topography at the synchrotron light source ANKA, Karlsruhe,” Nucl. Instrum. Methods Phys. B 199, 550553.CrossRefGoogle Scholar
Tanner, B. K., Wittge, J., Allen, D., Fossati, M. C., Danilewsky, A. N., McNally, P., Garagorri, J., Elizalde, M. R., and Jacques, D. (2011). “Thermal slip sources at the extremity and bevel edge of silicon wafers,” J. Appl. Cryst. 44, 489494.CrossRefGoogle Scholar
Tanner, B. K., Fossati, M. C., Garagorri, J., Elizalde, M. R., Allen, D., McNally, P. J., Jacques, D., Wittge, J., and Danilewsky, A. N. (2012). “Prediction of the propagation probability of individual cracks in brittle single crystal materials,” Appl. Phys. Lett. 101, 041903.CrossRefGoogle Scholar