Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-12-06T19:39:38.917Z Has data issue: false hasContentIssue false

X-ray diffraction pattern analysis of CrFeCoNi high-entropy alloy deposited via cold spray

Published online by Cambridge University Press:  28 November 2025

Alessio Silvello
Affiliation:
CPT -Thermal Spray Centre-Universitat de Barcelona, Martí i Franques 1, 08028 Barcelona (ES)
José María Cabrera
Affiliation:
Department of Materials Science and Engineering, Technical University of Catalonia , Barcelona, Spain Fundació Centre CIM-UPC , Barcelona, Spain
Irene Garcia-Cano
Affiliation:
CPT -Thermal Spray Centre-Universitat de Barcelona, Martí i Franques 1, 08028 Barcelona (ES)
Claudio Aguilar*
Affiliation:
Departamento de Ingeniería de Minas, Metalurgia y Materiales, Laboratorio de Investigación en Metalurgia de Polvos (RPM), Universidad Técnica Federico Santa María, Valparaíso, Chile
*
Corresponding author: Claudio Aguilar; Email: claudio.aguilar@usm.cl

Abstract

CrFeCoNi high-entropy alloy (HEA) powder with an equimolar composition was produced via gas atomization and applied as a coating using the cold-spray technique. X-ray diffraction patterns were analyzed to characterize the microstructure of the raw HEA powder and cold-sprayed coatings using Rietveld refinement methods. The HEA powders exhibited a single-phase face-centered cubic crystal structure with a lattice parameter of 0.357349(1) nm, a low microstrain of 4.3(0.17) × 10−4, and a crystallite size of 225(8) nm, attributed to the rapid cooling during atomization. In contrast, the cold-sprayed coatings exhibited broadened diffraction peaks, with a reduced crystallite size of 67.9(1.2) nm and an increased microstrain of 2.2(0.23) × 10−3, showing crystallite size refinement and an increase in the density of crystalline defects due to severe plastic deformation during deposition. Additional microstructural analysis revealed texture in the {200} plane and intrinsic stacking fault probabilities increasing to 4.4(0.21) × 10−3. These findings highlight microstructural changes produced by the cold-spray process. This study provides valuable insights into optimizing cold-spray parameters and tailoring HEA properties for industrial applications.

Information

Type
Technical Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Aguilar, C., Araya, N., Klein, A. N., Cardoso-Gil, R., and Vargas, P.. 2017. “Novel Route to Synthesize Metallic Alloys by Applying Low Energy Centrifugal Field.” Physica Status Solidi (B) Basic Research 254 (9): 1600641. https://doi.org/10.1002/pssb.201600641.CrossRefGoogle Scholar
Aguilar, C., Ordoñez, S., Guzman, D., and Rojas, P. A.. 2010. “Mechanical Alloying of Cu–xCr (x = 3, 5 and 8wt.%) alloys. Journal of Alloys and Compounds 504 (1): 102–9. https://doi.org/10.1016/j.jallcom.2010.05.061.CrossRefGoogle Scholar
Assadi, H., Gatner, F., Stoltenhoff, T., and Kreye, H. 2003. “Bonding Mechanism in Cold Gas Spraying.” Acta Materialia 51 (2003): 4379–94. https://doi.org/10.1016/S1359-6454(03)00274-X2.CrossRefGoogle Scholar
ASTM International, “ASTM E1920-03, Standard Guide for Metallographic Preparation of Thermal Sprayed Coating.” 2021.Google Scholar
Bagheri, S., Pariente, I. F., Ghelichi, R., Guagliano, M., and Vezzú, S.. 2010. “Effect of Shot Peening on Residual Stresses and Surface Work-Hardening in Cold Sprayed Coatings.” Key Engineering Materials 417–418: 397400. https://doi.org/10.4028/www.scientific.net/KEM.417-418.397.Google Scholar
Bai, Z. C., Ding, X. F., Hu, Q., Yang, M., Fan, Z. T., and Liu, X. W. 2021. Unique deformation behavior and microstructure evolution in high-temperature processing of a low-density TiAlVNb2 refractory high-entropy alloy. Journal of Alloys and Compounds 885. doi:10.1016/j.jallcom.2021.160962.CrossRefGoogle Scholar
Balaji, V., and Anthony Xavior, M. 2024, April 15. Development of high entropy alloys (HEAs): Current trends. Heliyon, Elsevier Ltd. doi:10.1016/j.heliyon.2024.e26464.CrossRefGoogle Scholar
Cantor, B. 2020. Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 100754.Google Scholar
Chen, H., Liu, C., Chu, X., Zhang, T., and Zheng, J.. 2022. “Corrosion Behavior and Microstructure of Cu-Based Composite Coatings Deposited by Cold Spraying.” Metals 12 (6): 955. https://doi.org/10.3390/met12060955.CrossRefGoogle Scholar
De Cooman, B. C., Estrin, Y., and Kim, S. K.. 2018. “Twinning-Induced Plasticity (TWIP) Steels.” In Acta Materialia, Vol. 142. Acta Materialia, Inc., pp. 283362. https://doi.org/10.1016/j.actamat.2017.06.046.Google Scholar
de Keijser, T. H., Langford, J. I., Mittemeijer, E. J., and Vogels, A. B. P.. 1982. “Use of the Voigt Function in a Single-Line Method for the Analysis of X-Ray Diffraction Line Broadening.” Journal of Applied Crystallography 15 (3): 308–14. https://doi.org/10.1107/s0021889882012035.CrossRefGoogle Scholar
de Martínez, V. P., Aguilar, C., Marín, J., Ordoñez, S., and Castro, F.. 2007. “Mechanical Alloying of Cu–Mo Powder Mixtures and Thermodynamic Study of Solubility.” Materials Letters 61 (4–5): 929–33. https://doi.org/10.1016/j.matlet.2006.11.070.CrossRefGoogle Scholar
Delhez, R., de Keijser, T. H., Langford, J. I., Louër, D., Mittemeijer, E. J., and Sonneveld, E. J.. 1993. “Crystal Imperfection Broadening and Peak Shape in the Rietveld Method.” In The Rietveld Method, edited by Young, R. A.. Oxford University Press, pp. 132–66 (online edition).10.1093/oso/9780198555773.003.0008CrossRefGoogle Scholar
Dercz, G., Matula, I., and Dercs, J. 2017. Phase composition and microstructure of new Ti–Ta–Nb–Zr biomedical alloys prepared by mechanical alloying method. Powder Diffraction Journal, S186S192.10.1017/S0885715617000045CrossRefGoogle Scholar
Dong, Y., Lu, Y., Jiang, L., Wang, T., and Li, T. 2014. Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 52: 105109.10.1016/j.intermet.2014.04.001CrossRefGoogle Scholar
Edalati, P., Floriano, R., Tang, Y., … Edalati, K. 2020. Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion. Materials Science and Engineering C 112(March), 110908.10.1016/j.msec.2020.110908CrossRefGoogle ScholarPubMed
Fan, N., Chen, T., Ju, J., Rafferty, A., Lupoi, R., Kong, N., Xie, Y., and Yin, S.. 2024. “Solid-State Deposition of Mo-Doped CoCrFeNi High-Entropy Alloy with Excellent Wear Resistance via Cold Spray.” Journal of Materials Research and Technology 30: 8382–95. https://doi.org/10.1016/j.jmrt.2024.05.099.CrossRefGoogle Scholar
Gao, M. C., Yeh, J.-W., Liaw, P. K., and Zhang, Y. 2016. High-Entropy Alloys, Springer International. doi:10.1007/978-3-319-27013-5.CrossRefGoogle Scholar
German, R. M. 2005. Powder Metallurgy and Particulate Materials Processing. Metal Powder Industries Federation. p. 38.Google Scholar
Ghelichi, R., Bagherifard, S., Mac Donald, D., Brochu, M., Jahed, H., Jodoin, B., and Guagliano, M.. 2014. “Fatigue Strength of Al Alloy Cold Sprayed with Nanocrystalline Powders.” International Journal of Fatigue 65: 5157. https://doi.org/10.1016/j.ijfatigue.2013.09.001.CrossRefGoogle Scholar
Gorr, B., Müller, F., Azim, M., … Heilmaier, M. 2017. High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition. Oxidation of Metals 88(3–4): 339349.10.1007/s11085-016-9696-yCrossRefGoogle Scholar
Hernández, O., Aguilar, C., and Medina, A.. 2019. “Effects of Mo Concentration on the Structural and Corrosion Properties of Cu Alloy.” Metals 9 (12): 1307. https://doi.org/10.3390/met9121307.CrossRefGoogle Scholar
Hirth, J. P. 1982. Theory of Dislocations, 2nd ed. John Willey & Sons.Google Scholar
Kosarev, V. F., Klinkov, S. V, Alkhimov, A. P., and Papyrin, A. N. 2002. On Some Aspects of Gas Dynamics of the Cold Spray Process.10.1361/105996303770348384CrossRefGoogle Scholar
Li, M., Gazquez, J., Borisevich, A., Mishra, R., and Flores, K. M. 2018. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method. Intermetallics 95: 110118.10.1016/j.intermet.2018.01.021CrossRefGoogle Scholar
Lu, Y., Dong, Y., Jiang, L., Wang, T., Li, T., and Zhang, Y. 2015. A criterion for topological close-packed phase formation in high entropy alloys. Entropy 17(4): 23552366.10.3390/e17042355CrossRefGoogle Scholar
Lutterotti, L., Matthies, S., and Wenk, H. R.. 1999. “MAUD: A Friendly Java Program for Material Analysis Using Diffraction.” Newsletter of CDP 21: 1415.Google Scholar
Lutterotti, L., and Scardi, P.. 1990. “Simultaneous Structure and Size–Strain Refinement by the Rietveld Method.” Journal of Applied Crystallography 23 (4): 246–52. https://doi.org/10.1107/S0021889890002382.CrossRefGoogle Scholar
Mandal, S., Sadeghianjahromi, A., and Wang, C. C.. 2022. “Experimental and Numerical Investigations on Molten Metal Atomization Techniques: A Critical Review.” Advanced Powder Technology 33 (11): 103809. https://doi.org/10.1016/j.apt.2022.103809.CrossRefGoogle Scholar
Martin, P., Salvo, C., Pio, E., … Aguilar, C. 2021. A Study on the Phase Formation and Magnetic Properties of FeNiCoCuM (M = Mo, Nb) High-Entropy Alloys Processed Through Powder Metallurgy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. doi:10.1007/s11661-021-06137-4.CrossRefGoogle Scholar
Mengiste, B. T., Arab, A., Chen, P., and Xie, J. 2025. Effect of cold spray deposition parameters on wear performance of CrMnFeCoNi high entropy alloy. Tribology International 204: 110465.10.1016/j.triboint.2024.110465CrossRefGoogle Scholar
Mittemeijer, E. J., and Scardi, P. 2004. Diffraction Analysis of the Microstructure of Materials, Springer.10.1007/978-3-662-06723-9CrossRefGoogle Scholar
Naseri, M., Myasnikova, A., Gholami, D., Imantalab, O., Mikhailov, D., Amra, M., Shaburova, N., et al. 2024a. “Regulating of Wear Properties Through Microstructure Engineering in Novel Cost-Effective Fe30Ni25Cr25Mo10Al10 High-Entropy Alloy Processed by Cyclic Closed-Die Forging.” Journal of Alloys and Metallurgical Systems 7: 100101. https://doi.org/10.1016/j.jalmes.2024.100101.CrossRefGoogle Scholar
Naseri, M., Myasnikova, A., Imantalab, O., Gholami, D., Mikhailov, D., Amra, M., Shaburova, N., et al. 2024b. “Ultrahigh Hardness with Exceptional Wear Resistance of Novel Cost-Effective Nanostructured Fe40Ni25Cr25Mo5Al5 High-Entropy Alloy Through Cyclic Closed-Die Forging Process.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 703: 135413. https://doi.org/10.1016/j.colsurfa.2024.135413.CrossRefGoogle Scholar
Naseri, M., Myasnikova, A., Imantalab, O., Gholami, D., Mikhailov, D., Amra, M., Shaburova, N., et al. 2024c. “Microstructure Refinement and Wear Resistance Enhancement of Cost-Effective Fe50−2xMn30Co10Cr10NixCux (x = 0, 5 at%) High-Entropy Alloys Through Cyclic Closed-Die Forging Process.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 703: 135345. https://doi.org/10.1016/j.colsurfa.2024.135345.CrossRefGoogle Scholar
Odetola, P. I., Babalola, B. J., Afolabi, A. E., … Olubambi, P. A. 2024, November 30). Exploring high entropy alloys: A review on thermodynamic design and computational modeling strategies for advanced materials applications. Heliyon, Elsevier Ltd. doi:10.1016/j.heliyon.2024.e39660.CrossRefGoogle Scholar
Özbilen, S., Vasquez, J. F. B., Abbott, W. M., Yin, S., Morris, M., and Lupoi, R.. 2023. “Mechanical Milling/Alloying, Characterization and Phase Formation Prediction of Al0.1–0.5(Mn)CoCrCuFeNi-HEA Powder Feedstocks for Cold Spray Deposition Processing.” Journal of Alloys and Compounds 961: 170854. https://doi.org/10.1016/j.jallcom.2023.170854CrossRefGoogle Scholar
Popa, N. C. 1998. “The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for All Laue Groups in Rietveld Refinement.” Journal of Applied Crystallography 31 (2): 176–80. https://doi.org/10.1107/S0021889897009795.CrossRefGoogle Scholar
Poza, P., and Garrido-Maneiro, M. Á. 2022. Cold-sprayed coatings: Microstructure, mechanical properties, and wear behaviour. Progress in Materials Science 123. doi:10.1016/j.pmatsci.2021.100839.CrossRefGoogle Scholar
Rietveld, H. M. 1969. A profile refinement method for nuclear and magnetic structure. Journal of Applied Crystallography 21, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Salvo, C., Aguilar, C., Guzmán, D., Alfonso, I., and Mangalaraja, R. V.. 2019. “Mechanically Enhanced Novel Ti-Based Alloy Foams Obtained by Hot Pressing.” Materials Science and Engineering A 759 (May): 112–23. https://doi.org/10.1016/j.msea.2019.05.022.CrossRefGoogle Scholar
Scardi, P., Lutterotti, L., and Maistrelli, P.. 1994. “Experimental Determination of the Instrumental Broadening in the Bragg–Brentano Geometry.” Powder Diffraction 9 (3): 180–86. https://doi.org/10.1017/S0885715600019187.CrossRefGoogle Scholar
Shi, Y., Yang, B., and Liaw, P. 2017. Corrosion-Resistant High-Entropy Alloys: A Review. Metals 7(2): 43.10.3390/met7020043CrossRefGoogle Scholar
Singh, H., Kumar, M., and Singh, R. 2022. An overview of various applications of cold spray coating process. Materials Today: Proceedings 56: 28262830.Google Scholar
Tria, S., Elkedim, O., Hamzaoui, R., Guo, X., Bernard, F., Millot, N., and Rapaud, O.. 2011. “Deposition and Characterization of Cold Sprayed Nanocrystalline NiTi.” In Powder Technology 210 (2): 181–88. https://doi.org/10.1016/j.powtec.2011.02.026.CrossRefGoogle Scholar
Ungár, T. 2007. Characterization of nanocrystalline materials by X-ray line profile analysis. Journal of Materials Science 42(5): 15841593.10.1007/s10853-006-0696-1CrossRefGoogle Scholar
Ungár, T., and Borbély, A. 1996. The effect of dislocation contrast on x‐ray line broadening: A new approach to line profile analysis. Applied Physics Letters 69(21): 31733175.10.1063/1.117951CrossRefGoogle Scholar
Vaidya, M., Muralikrishna, G. M., and Murty, B. S. 2019. High-entropy alloys by mechanical alloying: A review. Journal of Materials Research 34(5): 664686.10.1557/jmr.2019.37CrossRefGoogle Scholar
Vaz, R. F., Silvello, A., Sanchez, J., Albaladejo, V., and García-Cano, I.. 2021. “The Influence of the Powder Characteristics on 316l Stainless Steel Coatings Sprayed by Cold Gas Spray.” Coatings 11 (2): 118. https://doi.org/10.3390/coatings11020168.CrossRefGoogle Scholar
Warren, B. E. 1959. X-ray studies of deformed metals. Progress in Metal Physics 8(8): 147–02.10.1016/0502-8205(59)90015-2CrossRefGoogle Scholar
Warren, B. E. 1990. X-Ray Diffraction. Dover Publications, Inc.Google Scholar
Wei, J., Cojocaru, C., Aghasibeig, M., Shao, C., Li, Z., Zhang, J., Irissou, E., and Zou, Y.. 2024. “Deposition, Microstructure and Hardness of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Coatings by Cold Spray, HVOF, and Plasma Spray.” Surface and Coatings Technology 494: 131442. https://doi.org/10.1016/j.surfcoat.2024.131442.CrossRefGoogle Scholar
Williamson, G. K., and Hall, W. H.. 1953. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1(1): 2231.10.1016/0001-6160(53)90006-6CrossRefGoogle Scholar
Yao, H. W., Qiao, J. W., Gao, M. C., … Zhang, Y.. 2016. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling. Materials Science and Engineering A 674: 203211.10.1016/j.msea.2016.07.102CrossRefGoogle Scholar
Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., and Yang, Y.. 2016. High-entropy alloy: challenges and prospects. Materials Today 19(6): 349362.10.1016/j.mattod.2015.11.026CrossRefGoogle Scholar
Yeh, J.W., Chen, Y.-L., Lin, S.-J., and Chen, S.-K.. 2007. “High-Entropy Alloys – A New Era of Exploitation.” Materials Science Forum 560: 19. https://doi.org/10.4028/www.scientific.net/MSF.560.13.CrossRefGoogle Scholar
Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.. 2015. “A Novel Low-Density, High-Hardness, High-entropy Alloy With Close-packed Single-phase Nanocrystalline Structures.” Materials Research Letters 3: 95–9. http://doi.org/10.1080/21663831.2014.985855.4.CrossRefGoogle Scholar
Yu, P.F., Zhang, L.J., Cheng, H., Zhang, H., Ma, M.Z., Li, Y.C., Li, G., Liaw, P.K., and Liu, R.P.. 2016. “The High-entropy Alloys With High Hardness and Soft Magnetic Property Prepared by Mechanical Alloying and High-pressure Sintering.” Intermetallics 70: 8287. http://doi.org/10.1016/j.intermet.2015.11.0056.CrossRefGoogle Scholar
Zeng, Y., Man, M., Bai, K., and Zhang, Y.-W.. 2021. “Revealing High-fidelity Phase Selection Rules for High Entropy Alloys: A Combined CALPHAD and Machine Learning Study.” Materials and Design 202: 109532. https://doi.org/10.1016/j.matdes.2021.109532.CrossRefGoogle Scholar
Zhang, Y., Gao, M. C., Liaw, P. K., and Yeh, J. W.. 2016. High-Entropy Alloys: Fundamentals and Applications. (Springer, Ed.) High-Entropy Alloys: Fundamentals and Applications. doi:10.1007/978-3-319-27013-5_12.CrossRefGoogle Scholar
Zhang, C., Molla, T., Brandl, C., Watts, J., McCully, R., Tang, C., and Schaffer, G.. 2025. “Critical Velocity and Deposition Efficiency in Cold Spray: A Reduced-Order Model and Experimental Validation.” Journal of Manufacturing Processes 134: 547–57. https://doi.org/10.1016/j.jmapro.2024.12.077.CrossRefGoogle Scholar
Zhang, S., Zhou, W., Zhou, S., Hu, F., Yershov, S., and Wu, K.. 2023. “Investigation of Microstructural Evolution and Crack Extension in a Quenching and Partitioning (Q & P) Steel at Different Strain Rates.” Journal of Materials Research and Technology 24: 2385–402. https://doi.org/10.1016/j.jmrt.2023.03.149.CrossRefGoogle Scholar