Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T14:18:56.688Z Has data issue: false hasContentIssue false

X-ray powder data and bond valence of La0.65Sr0.35MnO3 after Rietveld refinement

Published online by Cambridge University Press:  05 March 2012

C. O. Paiva-Santos*
Affiliation:
Laboratório Computacional de Análises Cristalográficas e Cristalinas-LabCACC, Instituto de Química, UNESP, 14800-900 Araraquara, R. Prof. Francisco Degni s/n, Brazil
R. F. C. Marques
Affiliation:
Instituto de Química-UNESP, 14800-900 Araraquara, R. Prof. Francisco Degni s/n, Brazil
M. Jafelicci Jr.
Affiliation:
Instituto de Química-UNESP, 14800-900 Araraquara, R. Prof. Francisco Degni s/n, Brazil
L. C. Varanda
Affiliation:
Instituto de Química-UNESP, 14800-900 Araraquara, R. Prof. Francisco Degni s/n, Brazil
*
a) Electronic mail: copsanto@iq.unesp.br

Abstract

Powder X-ray diffraction (XRD) data were collected for La0.65Sr0.35MnO3 prepared through an alternative method from a stoichiometric mixture of Mn2O3, La2O3, and SrO2, fired at 1300 °C for 16 h. XRD analysis using the Rietveld method was carried out and it was found that manganite has rhombohedral symmetry (space group R3c). The lattice parameters are found to be a=5.5032 Å and c=13.3674 Å. The bond valence computation indicates that the initial inclusion of Sr occurs at higher temperature.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, J. A., Martínez-Lope, M. J., Casais, M. T., MacManus-Driscoll, J. L., de Silva, P. S. I. P. N., Cohen, L. F., and Fernández-Días, M. T. (1997). “Non-stoichiometry, structural defects and properties of LaMnO3+δ with high values (0.1≤δ≤0.29),J. Mater. Chem. JMACEP 7, 21392144. jtc, JMACEP CrossRefGoogle Scholar
Asamitsu, A., Moritomo, Y., Kumai, R., Tomioka, Y., and Tokura, Y. (1996). “Magnetostructural phase transitions in La1−xSrxMnO3 with controlled carrier density,” Phys. Rev. B PRBMDO 54, 17161723. prb, PRBMDO CrossRefGoogle ScholarPubMed
Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T., and Tokura, Y. (1995). “A structural phase-transition induced by an external magnetic-field,” Nature (London) NATUAS 373, 407409. nat, NATUAS CrossRefGoogle Scholar
Balcells, L., Enrich, R., Mora, J., Calleja, A., Fontcuberta, J., and Obradors, X. (1976). “Manganese perovskites: Thick-film based position sensors fabrication,” Appl. Phys. Lett. APPLAB 69, 14861488. apl, APPLAB CrossRefGoogle Scholar
Brown, I. D.and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B41, 244247. acl, ASBSDK CrossRefGoogle Scholar
Doshi, R., Shen, Y., and Alcock, C. B. (1994). “Oxygen pumping characteristics of oxide-ion electrolytes at low-temperatures,” Solid State Ionics SSIOD3 68, 133137. ssi, SSIOD3 CrossRefGoogle Scholar
Esaka, T., Kamata, M., and Ohnishi, M. (1996). “Control of oxygen deficiency in Ca1−xLaxMnO3−δ and its cathodic properties in alkaline solution,” J. Appl. Electrochem. JAELBJ 26, 439442. lbj, JAELBJ CrossRefGoogle Scholar
Ferris, V., Brohan, L., Ganne, M., and Tournoux, M. (1995). “Structural aspects, density-measurements and susceptibility behavior of the defect perovskite approximate-to-LaMnO3, with 0.8≤La/Mn≤1 and 2.80≤O/Mn≤3.58,Eur. J. Solid State Inorg. Chem. EJSCE5 32, 131144. ess, EJSCE5 Google Scholar
Glazer, A. M. (1972). “The classification of tilted octahedra in perovskites,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B28, 33843392. acb, ACBCAR CrossRefGoogle Scholar
Habekost, A., Norby, P., Jorgensen, J. E., and Lebech, B. (1994). “Neutron and X-ray powder diffraction studies of lanthanum manganite, a non-stoichiometric perovskite,” Acta Chem. Scand. ACHSE7 48, 377381. act, ACHSE7 CrossRefGoogle Scholar
Lecoeur, P., Trouilloud, P. L., Xiao, G., Gupta, A., Gong, G. Q., and Li, X. W. (1997). “Magnetic domain structures of La0.67Sr0.33MnO3 thin films with different morphologies,” J. Appl. Phys. JAPIAU 82, 39343939. jap, JAPIAU CrossRefGoogle Scholar
Marques, R. F. C., Jafelicci, M., Paiva-Santos, C. O., Varanda, L. C., and Godoi, R. H. M. (2001). “In situ solid state oxidation reaction for La1−xSrxMnO3 (x=0, 0.1, 0.2 and 0.3) formation,” J. Magn. Magn. Mater. JMMMDC 226, 812814. jmm, JMMMDC CrossRefGoogle Scholar
Obayashi, H., Sakurai, Y., and Gejo, T. (1976). “Perovskite-type oxides as ethanol sensors,” J. Solid State Chem. JSSCBI 17, 299303. jss, JSSCBI CrossRefGoogle Scholar
Ohno, Y., Nagata, S., and Sato, H. (1983). “Properties of oxides for high-temperature solid electrolyte fuel-cell,” Solid State Ionics SSIOD3 9–10, 10011007. ssi, SSIOD3 CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Shanon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN A32, 751767. aca, ACACBN CrossRefGoogle Scholar
Van Roosmalen, J. A. M., Cordfunke, E. H. P., Helmholdt, R. B., and Zandbergen, H. W. (1994). “The defect chemistry of LaMnO3±δ. 2. Structural Aspects of LaMnO3+δ,J. Solid State Chem. JSSCBI 110, 100105. jss, JSSCBI CrossRefGoogle Scholar
Young, R. A., Sakathivel, A., Moss, T. S., and Paiva-Santos, C. O. (1995). “DBWS-9411, an upgrade of the DBWS*. * programs for Rietveld refinement with PC and mainframe computers,” J. Appl. Crystallogr. JACGAR 28, 366367. acr, JACGAR CrossRefGoogle Scholar
Young, R. A., Wiles, D. B. (1982). “Profile shape functions in Rietveld refinements,” J. Appl. Cryst. JACGAR 15, 430438.CrossRefGoogle Scholar