Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T14:02:31.477Z Has data issue: false hasContentIssue false

X-ray powder diffraction data of (25R)-spirost-5-en-3β-ol(diosgenin)

Published online by Cambridge University Press:  01 March 2012

J. C. Poveda
Affiliation:
Grupo de Investigación en Química Estructural, Centro de Investigación en Biomoléculas “CIBIMOL,” Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A. A. 678, Bucaramanga, Colombia
J. A. Henao*
Affiliation:
Grupo de Investigación en Química Estructural, Centro de Investigación en Biomoléculas “CIBIMOL,” Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A. A. 678, Bucaramanga, Colombia
W. Delgado
Affiliation:
Grupo de Investigación en Productos Naturales, Facultad de Química, Universidad Nacional de Colombia, Bogota, D.C./Colombia
R. Segura de Correa
Affiliation:
Grupo de Investigación en Productos Naturales, Facultad de Química, Universidad Nacional de Colombia, Bogota, D.C./Colombia
A. A. López
Affiliation:
Grupo de Investigación en Productos Naturales, Facultad de Química, Universidad Nacional de Colombia, Bogota, D.C./Colombia
*
a)Electronic mail: jahenao@uis.edu.co

Abstract

The diosgenin, (25R)-spirost-5-en-3β-ol, was isolated from rhizomes of dioscorea meridensis and characterized by X-ray powder diffraction, IR and MS. The diosgenin was found to be monoclinic, with refined unit cell parameters a=16.774(3), b=7.259(2), c=10.383(2) Å, β=92.74(2)°, V=1262.9(3) (Å3), Z=2, Dx(g∕cm−3)1.089, with space group P21 (No. 4).

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhov, L. S., Musienko, M. M., Piacente, S., Pizza, C., and Oleszek, W. (1999). “Structure of steroidal saponins from undergrounds parts of Allium nutants L.,” J. Agric. Food Chem. JAFCAU 47, 31933196.CrossRefGoogle Scholar
Boultif, A. and Loüer, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113.CrossRefGoogle Scholar
Dong, C. (1999). “PowderX: Windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. JACGAR 32, 838838.CrossRefGoogle Scholar
Goswami, A., Kotoky, R., Rastogi, R. C., and Ghosh, A. C. (2001). US Patent, 6, 160, 139, 2000; Goswami, A., Kotoky, R., Rastogi, R. C., and Ghosh, A. C., “A One-Pot Efficient Process for 16-Dehydropregnenolone Acetate,” Chem. Abstr. 134, 17621m.Google Scholar
Laugier, J. and Bochu, B. (2002). LMGP-Suite Suite of Programs for the interpretation of X-ray Experiments, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d’Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgpGoogle Scholar
McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., and Wong-Ng, W. (1986). “Methods for Producing Standard X-ray Diffraction Powder Patterns,” Powder Diffr. PODIE2 1, 4043.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS*AIDS80: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Tech. Note 1141, (NBS*AIDS83 is a development of NBS*AIDS80).Google Scholar
Pfeiffer, D., Kutschabsky, L., Kretschmer, R. G., and Coll, F. (1985). “Molekule- und kristallstruktur von Bahamgenin,” Z. Chem. ZECEAL 25, 183184.CrossRefGoogle Scholar
Ribár, B., Kapor, A., Vladimirov, S., Zivanov-Stakic, D., Argay, G., and Kalman, A. (1986). “Structure of spirosta-5, 25(27)-diene-3β, 11α-diol,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 42, 1780.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F(N): A criterion for rating powder diffraction patterns and evaluating the reliability of powder pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065.CrossRefGoogle Scholar
Soriano-Garcia, M., Lopez y Celis, I., Toscano, R. A., Barba Chavez, J. M., Enriquez, P., Hernández, R., and Rodríguez, A. (1987). “Structure of (3β.25R)-Spirost-5-ene-3.17-diol hemihydrate (pennogenin),” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 43, 1163.CrossRefGoogle Scholar
Taylor, W. G., Elder, J. L., Chang, P. R., and Richards, K. W. (2000). “Microdetermination of diosgenin from fenugreek (trigonella foenum-graecum) seeds,” J. Agric. Food Chem. JAFCAU 48, 52065210.CrossRefGoogle ScholarPubMed
Taylor, W. G., Zulyniak, H. J., Richards, K. W., Acharya, S. N., Bittman, S., and Elder, J. L. (2002). “Variation in diosgenin levels among 10 accessions of fenugreek seeds produced in Western Canada,” J. Agric. Food Chem. JAFCAU 50, 59945997.Google Scholar
Vladimirov, S., Zivanov-Stakic, D., and Ribár, B. (1991). “A steroidal sapogenin from helleborus multifidus subs. Serbivus,” Phytochemistry PYTCAS 30, 17241725.Google Scholar