Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T03:51:35.647Z Has data issue: false hasContentIssue false

X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: Application to (Gd, Nd)5Si4 compounds

Published online by Cambridge University Press:  28 November 2016

A. M. G. Carvalho*
Affiliation:
Laboratório Nacional de Luz Síncrotron, CNPEM, 13083-970, Campinas, SP, Brazil
R. S. Nunes
Affiliation:
Laboratório Nacional de Luz Síncrotron, CNPEM, 13083-970, Campinas, SP, Brazil Unidade Acadêmica de Física, UFCG, 58429-900, Campina Grande, PB, Brazil
A. A. Coelho
Affiliation:
Instituto de Física Gleb Wataghin, UNICAMP, 13083-859, Campinas, SP, Brazil
*
a)Author to whom correspondence should be addressed. Electronic mail: alexandre.carvalho@lnls.br

Abstract

Representative compounds of the new family of magnetic materials Gd5−xNdxSi4 were analyzed by X-ray diffraction at the XRD1 beamline at Laboratório Nacional de Luz Síncrotron. To reduce X-ray absorption, thin layers of the powder samples were mounted outside the capillaries and measured in Debye–Scherrer geometry as usual. The XRD analyses and the magnetometry results indicate that the behavior of the magnetic transition temperature as a function of Nd content may be directly related to the average of the four smallest interatomic distances between different rare earth sites of the majority phase of each compound. The quality and consistency of the results show that the XRD1 beamline is able to perform satisfactory XRD experiments on high-absorption materials even off the best conditions.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergamaschi, A., Cervellino, A., Dinapoli, R., Gozzo, F., Henrich, B., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B., and Shi, X. (2010). “The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source,” J. Synchrotron Rad. 17, 653668.Google Scholar
Canova, H., Fontoura, A., Neuenschwander, R. T., Diaz, B., and Rodella, C. B. (2014). “Upgrades to the XRD1 beamline optics and endstation at the LNLS,J. Phys. Conf. Ser. 493, 012004.CrossRefGoogle Scholar
Pecharsky, V. K. and Gschneidner, K. A. Jr. (1997). “Phase relationships and crystallography in the pseudobinary system Gd5Si4-Gd5Ge4,J. Alloys Compd. 260, 98106.Google Scholar
Pecharsky, V. K. and Zavalij, P. Y. (2005). Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, New York), 2nd ed., p. 309.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,J. Appl. Cryst. 2, 6571.Google Scholar
Roger, J., Babizhetskyy, V., Jardin, R., Halet, J.-F., and Guérin, R. (2006). “Solid state phase equilibria in the ternary Nd-Si-B system at 1270 K,” J. Alloys Compd. 415, 7384.CrossRefGoogle Scholar
Tang, C. C., Thompson, S. P., Hill, T. P., Wilkin, G. R., and Wagner, U. W. (2007). “Design of powder diffraction beamline (BL-I11) at Diamond,Z. Kristallogr. Suppl. 26, 153158.Google Scholar
Thompson, S. P., Parker, J. E., Marchal, J., Potter, J., Birt, A., Yuan, F., Fearn, R. D., Lennie, A. R., Streeta, S. R., and Tang, C. C. (2011). “Fast X-ray powder diffraction on I11 at Diamond,J. Synchrotron Rad. 18, 637648.CrossRefGoogle ScholarPubMed
Yang, H. F., Rao, G. H., Chu, W. G., Liu, G. Y., Ouyang, Z. W., and Liang, J. K. (2002). “The crystal structure of La5Si4 and Nd5Si4,” J. Alloys Compd. 334, 131134.Google Scholar
Yang, H. F., Rao, G. H., Liu, G. Y., Ouyang, Z. W., Liu, W. F., Feng, X. M., Chu, W. G., and Liang, J. K. (2003). “Structure dependence of magnetic properties of Nd5Si4-xGex (x = 1.2 and 2),Physica B 325, 293299.CrossRefGoogle Scholar