Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T08:04:12.925Z Has data issue: false hasContentIssue false

X-ray powder reference patterns of the Fe(Sb2+ x Te1− x ) skutterudites for thermoelectric applications

Published online by Cambridge University Press:  07 May 2014

W. Wong-Ng*
Affiliation:
Materials Science Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J.A. Kaduk
Affiliation:
Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
G. Tan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
Y. Yan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
X. Tang
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
*
a) Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

The crystal structure and powder X-ray diffraction (XRD) patterns for three skutterudite samples, Fe(Sb2+ x Te1− x ), x = 0.05, 0.10, 0.20, have been determined. These compounds crystallize in the cubic space group $Im\bar 3$ . Te was found to randomly substitute in the Sb site. Because of the fact the covalent radius of Sb is greater than that of Te, a trend of increasing lattice parameter has been observed as the x value in Fe(Sb2+ x Te1− x ) increases [cell parameters range from 9.10432(4) to 9.11120(3) Å for x = 0.0 to 0.2, respectively]. The Fe–Sb/Te bond distance also increases progressively [from 2.5358(4) to 2.5388(4) Å] as the Te content decreases. While average Sb/Te–Sb/Te distances in the four-membered rings are similar in these three compounds, the average Sb/Te–Sb/Te edge distances in the octahedral framework increase progressively from 3.5845(12) to 3.5900(13) Å. Reference XRD patterns of these three phases have been prepared to be included in the Powder Diffraction File (PDF).

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fleurial, J. P., Caillat, T., and Borshchevsky, A. (1997a). Skutterudites: an update, in Proceedings of the 16th International Conference on Thermoelectrics, (IEEE, Piscataway, NJ) p. 1–11.Google Scholar
Fleurial, J. P., Caillat, T., and Borshchevsky, A. (1997b). “Low thermal conductivity skutterudites,” MRS Proc. 478, 175. doi: 10.1557/PROC-478-175.CrossRefGoogle Scholar
Kjekshus, A., Nicholson, D. G., and Rakke, T. (1973). “Compounds with the skutterudite type crystal structure. I. On Oftedal's relation,” Acta Chem. Scand. 27, 13071314.CrossRefGoogle Scholar
Kjekshus, A., Nicholson, D. G., and Rakke, T. (1974). “Compounds with the skutterudite type crystal structure. III. structural data for arsenides and antimonides,” Acta Chem. Scand. A28, 99103.CrossRefGoogle Scholar
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748, Los Alamos, USA: Los Alamos National Laboratory.Google Scholar
Laufek, F. and Navrátil, J. (2010). “Crystallographic study of ternary ordered skutterudite IrGe1.5Se1.5 ,” Powder Diffr. 25, 247252.CrossRefGoogle Scholar
Laufek, F. and Navrátil, J. (2011). “Synthesis and Rietveld refinement of the ternary skutterudite RuSb2Te,” Powder Diffr. 26, 331334.CrossRefGoogle Scholar
Laufek, F., Navrátil, J., Plašil, J., Plechĉcek, T., and Draŝar, Ĉ. (2009). “Synthesis, crystal structure and transport properties of skutterudite-related CoSn1.5Se1.5 ,” J. Alloys Compd. 479, 102106.CrossRefGoogle Scholar
Li, X. Y., Chen, L. D., Fan, J. F., Zhang, W. B., Kawahara, T., and Hirai, J. (2005). “Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering,” Appl. Phys. 98, 083702.CrossRefGoogle Scholar
Liu, W. S., Zhang, B. P., Zhao, L. D., and Li, J. F. (2008). “Improvement of thermoelectric performance of CoSb3− x Te x skutterudite compounds by additional substitution of IVB-group elements for Sb,” Chem. Mater., 20, 75267531.CrossRefGoogle Scholar
Navrátil, J., Laufek, F., Plcháček, T., and Drašar, Č. (2012). “Thermoelectric properties of the Ru2Ni2Sb12 ternary skutterudite,” J. Solid State Chem., 193, 27.CrossRefGoogle Scholar
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).CrossRefGoogle Scholar
Oftedal, I. (1928). “The crystal structure of skutterudite and smaltite-chloanthite,” Z. Kristallogr. A66, 517.CrossRefGoogle Scholar
Powder Diffraction File (2014). Produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA. 19073-3273, USA.Google Scholar
Prytz, Ø. (2007). “Electronic structure and bonding in thermoelectric skutterudites,” PhD thesis, Physics Department, University of Oslo.Google Scholar
Pyykko, P. and Atsumi, M. (2009). “Molecular single-bond covalent radii for elements 1–118,” Chem. Eur. J. 15 (1), 186.CrossRefGoogle ScholarPubMed
Rietveld, H. M. (1969) “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Sales, B. C. (2003). Handbook on the Physics and Chemistry of Rare-Earths (Elsevier Science, Amsterdam), Vol. 33, p. 1.Google Scholar
Su, X., Li, H., Yan, Y., Wang, G., Chi, H., Zhou, X., Tang, X., Zhang, Q., and Uher, C. (2012). “Microstructure and thermoelectric properties of CoSb2.75Ge0.25- x Te x prepared by rapid solidification,” Acta Mater. 60, 35363544.CrossRefGoogle Scholar
Tan, G., Liu, W., Chi, H., Su, X., Wang, S., Yan, Y., Tang, X., Wong-Ng, W., and Uher, C. (2013). “Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+ x Te1− x via band structure modification and significant point defect scattering,” Acta Mater., 61, 76937704.CrossRefGoogle Scholar
Vaqueiro, P., Sobany, G. G., Powell, A. V., and Knight, K. S. (2006). “Structure and thermoelectric properties of the ordered skutterudite CoGe1.5Te1.5,” J. Solid State Chem. 179, 20472053.CrossRefGoogle Scholar
Yan, Y. G., Wong-Ng, W., Li, L., Levin, I., Kaduk, J. A., Suchomel, M. R., Sun, X., Tan, G. J., and Tang, X. F. (2014). “Structures and thermoelectric properties of double-filled (Ca x Ce1− x )Fe4Sb12 skutterudites,” J. Appl. Phys. (2014, submitted).Google Scholar
Yang, J., Qiu, P., Liu, R., Xi, L., Zheng, S., Zhang, W., Chen, L., Singh, D. J., Yang, J. (2011). “Trends in electrical transport of p-type skutterudites RFe4Sb12 (R = Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory,” Phys. Rev. B 84, 235205.CrossRefGoogle Scholar