Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T12:56:48.906Z Has data issue: false hasContentIssue false

XRD-DSC: a screening tool for identifying effective MOFs for selective gas sorption from humid gas streams

Published online by Cambridge University Press:  07 February 2019

John B Parise*
Affiliation:
Joint Photon Sciences Institute, Stony Brook University, New York 11794-2100 Department of Geosciences, Stony Brook University, New York 11794-2100 Department of Chemistry, Stony Brook University, New York 11794-3400
Xianyin Chen
Affiliation:
Department of Chemistry, Stony Brook University, New York 11794-3400
Anna M. Plonka
Affiliation:
Department of Materials Science and Chemical Engineering, Stony Brook University, New York 11794-2275
William R. Woerner
Affiliation:
EAG Laboratories, Sunnyvale, California 94086
Debasis Banerjee
Affiliation:
Department of Chemistry, Stony Brook University, New York 11794-3400
David Connors
Affiliation:
Department of Chemistry, Stony Brook University, New York 11794-3400
Nancy Goroff
Affiliation:
Department of Chemistry, Stony Brook University, New York 11794-3400
*
a)Author to whom correspondence should be addressed. Electronic mail: john.parise@stonybrook.edu

Abstract

A commercially available combined X-ray diffraction – differential scanning calorimetry (XRD-DSC) stage was adapted for studies of gas loading in microporous materials, including metal organic frameworks (MOFs). Insertion of a custom-built humid atmosphere swing chamber (HASC) between a humidity generator and the XRD-DSC stage facilitates both humid atmosphere and vacuum swing gas loading. The HASC is necessary to buffer between the humidity generator and the XRD-DSC stage, allowing the gas mixture to homogenize prior to sample exposure, so that both humid atmosphere and vacuum swings could be performed. The changes in XRD can be used to follow structural changes, including collapse, which is indicative of a lack of microporosity upon activation, and the flexibity of frameworks upon gas sorption–desorption cycles. Measurements of the area under the DSC curve allows for calculation of the isosteric heat of adsorption (Qst; kJ molGAS−1). Vacuum-atmosphere swing experiments performed at different pressure steps allow for the reconstruction of the enthalpy of gas adsorption before and after a phase transition. These modes of operation are illustrated in three case studies from a program of exploratory MOF synthesis used to discover novel materials for selective gas sorption from humid gas streams: (1) gas binding in Stony Brook metal organic framework-1, (2) zeolitic imidazolate framework-7 response to variable pressure vacuum-atmosphere swing, and (3) high throughput evaluation of the selectivity of novel MOFs synthesized from customized linkers.

Type
Review Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguado, S., Bergeret, G., Titus, M. P., Moizan, V., Nieto-Draghi, C., Bats, N., and Farrusseng, D. (2011). “Guest-induced gate-opening of a zeolite imidazolate framework,” New J. Chem. 35, 546550.Google Scholar
Banerjee, D., Zhang, Z., Plonka, A. M., Li, J., and Parise, J. B. (2012). “A calcium coordination framework having permanent porosity and high CO2/N2 selectivity,” Cryst. Grow. Des. 12, 21622165.Google Scholar
Banerjee, D., Simon, C. M., Plonka, A. M., Motkuri, R. K., Liu, J., Chen, X. Y., Smit, B., Parise, J. B., Haranczyk, M., and Thallapally, P. K. (2016a). “Metal-organic framework with optimally selective xenon adsorption and separation,” Nat. Commun. 7, ncomms11831.Google Scholar
Banerjee, D., Wang, H., Plonka, A. M., Emge, T. J., Parise, J. B., and Li, J. (2016b). “Direct structural identification of gas induced gate-opening coupled with commensurate adsorption in a microporous metal-organic framework,” Chem.-Eur. J. 22, 1181611825.Google Scholar
Brown, C. M., Liu, Y., and Neumann, D. A. (2008). “Neutron powder diffraction of metal-organic frameworks for hydrogen storage,” Pramana-J. Phys. 71, 755760.Google Scholar
Ceder, G. and Persson, K. (2015). About the Materials Project. https://www.materialsproject.org/about.Google Scholar
Chen, X. Y., Plonka, A. M., Banerjee, D., Krishna, R., Schaef, H. T., Ghose, S., Thallapally, P. K., and Parise, J. B. (2015). “Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework,” J. Am. Chem. Soc. 137, 70077010.Google Scholar
Furukawa, H., Kim, J., Ockwig, N. W., O'Keeffe, M., and Yaghi, O. M. (2008). “Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra,” J. Am. Chem. Soc. 130, 1165011661.Google Scholar
Gu, X. D., Deng, J. C., and Yao, Z. (2007). “Bis(4-bromophenyl) sulfone,” Acta Crystallogr. Sect. E.-Struct Rep. Online 63, O1904O1905.Google Scholar
Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K. A. (2013). “Commentary: the materials project: a materials genome approach to accelerating materials innovation,” APL Mater. 1, 011002.Google Scholar
Kizzie, A. C., Wong-Foy, A. G., and Matzger, A. J. (2011). “Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture,” Langmuir 27, 63686373.Google Scholar
Lee, Y. J., Carr, S. W., and Parise, J. B. (1998). “Phase transition upon K+ ion exchange into Na low silica X: combined NMR and synchrotron X-ray powder diffraction study,” Chem. Mat. 10, 25612570.Google Scholar
Lee, Y., Vogt, T., Hriljac, J. A., Parise, J. B., Hanson, J. C., and Kim, S. J. (2002). “Non-framework cation migration and irreversible pressure- induced hydration in a zeolite,” Nature 420, 485489.Google Scholar
Liu, J., Wang, Y., Benin, A. I., Jakubczak, P., Willis, R. R., and LeVan, M. D. (2010). “CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC,” Langmuir 26, 1430114307.Google Scholar
Long, J. R. and Yaghi, O. M. (2009). “The pervasive chemistry of metal-organic frameworks,” Chem. Soc. Rev. 38, 12131214.Google Scholar
Parise, J. B., Corbin, D. R., and Abrams, L. (1995). “Structural changes upon sorption and desorption of Xe from Cd-exchanged zeolite rho: a real time synchrotron x-ray powder diffraction study,” Micropor. Mater. 4, 99110.Google Scholar
Plonka, A. M., Banerjee, D., Woerner, W. R., Zhang, Z., Li, J., and Parise, J. B. (2013a). “Effect of ligand geometry on selective gas-adsorption: the case of a microporous cadmium metal organic framework with a V-shaped linker,” Chem. Commun. 49, 70557057.Google Scholar
Plonka, A. M., Banerjee, D., Woerner, W. R., Zhang, Z. J., Nijem, N., Chabal, Y. J., Li, J., and Parise, J. B. (2013b). “Mechanism of carbon dioxide adsorption in a highly selective coordination network supported by direct structural evidence,” Angew. Chem.-Int. Edit. 52, 16921695.Google Scholar
Plonka, A. M., Chen, X. Y., Wang, H., Krishna, R., Dong, X., Banerjee, D., Woerner, W. R., Han, Y., Li, J., and Parise, J. B. (2016). “Light hydrocarbon adsorption mechanisms in two calcium-based microporous metal organic frameworks,” Chem. Mat. 28, 16361646.Google Scholar
Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., and Unger, K. K. (1994). “Recommendations for the characterization of porous solids,” Pure Appl. Chem. 66, 17391758.Google Scholar
Simon, C. M., Mercado, R., Schnell, S. K., Smit, B., and Haranczyk, M. (2015). “What are the best materials to separate a xenon/krypton mixture?,” Chem. Mat. 27, 44594475.Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K., and Lim, D. W. (2012). “Hydrogen storage in metal-organic frameworks,” Chem. Rev. 112, 782835.Google Scholar
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H., and Long, J. R. (2012). “Carbon dioxide capture in metal-organic frameworks,” Chem. Rev. 112, 724781.Google Scholar
Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M., and Yaghi, O. M. (2009). “Secondary building units, nets and bonding in the chemistry of metal-organic frameworks,” Chem. Soc. Rev. 38, 12571283.Google Scholar
Tsuzuki, S. and Fujii, A. (2008). “Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds,” Phys. Chem. Chem. Phys. 10, 25842594.Google Scholar
Woerner, W. R., Plonka, A. M., Chen, X. Y., Banerjee, D., Thallapally, P. K., and Parise, J. B. (2016). “Simultaneous in situ X-ray diffraction and calorimetric studies as a tool to evaluate gas adsorption in microporous materials,” J. Phys. Chem. C 120, 360369.Google Scholar
Zhao, P., Lampronti, G. I., Lloyd, G. O., Suard, E., and Redfern, S. A. T. (2014). “Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7,” J. Mater. Chem. A 2, 620623.Google Scholar