Article contents
Evaluating Cold, Wind, and Moisture Protection of Different Coverings for Prehospital Maritime Transportation–A Thermal Manikin and Human Study
Published online by Cambridge University Press: 31 October 2014
Abstract
Prehospital maritime transportation in northern areas sets high demands on hypothermia prevention. To prevent body cooling and hypothermia of seriously-ill or injured casualties during transportation, casualty coverings must provide adequate thermal insulation and protection against cold, wind, moisture, and water splashes.
The aim of this study was to determine the thermal protective properties of different types of casualty coverings and to evaluate which would be adequate for use under difficult maritime conditions (cold, high wind speed, and water splashes). In addition, the study evaluated the need for thermal protection of a casualty and verified the optimum system for maritime casualty transportation.
The study consisted of two parts: (1) the definition and comparison of the thermal protective properties of different casualty coverings in a laboratory; and (2) the evaluation of the chosen optimum protective covering for maritime prehospital transportation. The thermal insulations of ten different casualty coverings were measured according to the European standard for sleeping bags (EN 13537) using a thermal manikin in a climate chamber (-5°C) with wind speeds of 0.3 m/s and 4.0 m/s, and during moisture simulations. The second phase consisted of measurements of skin and core temperatures, air temperature, and relative humidity inside the clothing of four male test subjects during authentic maritime prehospital transportation in a partially-covered motor boat.
Wind (4 m/s) decreased the total thermal insulation of coverings by 11%-45%. The decrement of thermal insulation due to the added moisture inside the coverings was the lowest (approximately 22%-29%) when a waterproof reflective sheet inside blankets or bubble wrap was used, whereas vapor-tight rescue bags and bubble wrap provide the most protection against external water splashes. During authentic maritime transportation lasting 30 minutes, mean skin temperature decreased on average by 0.5°C when a windproof and water-resistant rescue bag was used over layered winter clothing.
The selected optimum rescue bag consisted of insulating and water-resistant layers providing sufficient protection against cold, wind, and water splashes during prehospital transportation lasting 30 minutes in the uncovered portion of a motor boat. The minimum thermal insulation for safe maritime transportation (30 minutes) is 0.46 m2K/W at a temperature of -5°C and a wind speed of 10 m/s.
JussilaK , RissanenS , ParkkolaK , AnttonenH . Evaluating Cold, Wind, and Moisture Protection of Different Coverings for Prehospital Maritime Transportation–A Thermal Manikin and Human Study. Prehosp Disaster Med. 2014;29(6):1-9.
Keywords
- Type
- Original Research
- Information
- Copyright
- Copyright © World Association for Disaster and Emergency Medicine 2014
References
- 8
- Cited by