No CrossRef data available.
Article contents
AGGREGATION AND CAPITAL ALLOCATION FORMULAS FOR BIVARIATE DISTRIBUTIONS
Published online by Cambridge University Press: 25 September 2017
Abstract
Cossette, Marceau, and Perreault derived formulas for aggregation and capital allocation based on risks following two bivariate exponential distributions. Here, we derive formulas for aggregation and capital allocation for 18 mostly commonly known families of bivariate distributions. This collection of formulas could be a useful reference for financial risk management.
Keywords
- Type
- Research Article
- Information
- Probability in the Engineering and Informational Sciences , Volume 32 , Issue 4 , October 2018 , pp. 556 - 566
- Copyright
- Copyright © Cambridge University Press 2017
References
1.Arnold, B.C. & Strauss, D. (1991). Bivariate distributions with conditionals in prescribed exponential families. Journal of the Royal Statistical Society, B 53: 365–375.Google Scholar
2.Balakrishnan, N. & Lai, C.D. (2009). Continuous bivariate distributions, 2nd ed. New York: Springer-Verlag.Google Scholar
3.Barges, M., Cossette, H. & Marceau, E. (2009). TVaR-based capital allocation with copulas. Insurance: Mathematics and Economics 45: 348–361.Google Scholar
4.Becker, P.J. & Roux, J.J.J. (1981). A bivariate extension of the gamma distribution. South African Statistical Journal 15: 1–12.Google Scholar
5.Block, H.W. & Basu, A.P. (1976). A continuous bivariate exponential distribution. Journal of the American Statistical Association 64: 1031–1037.Google Scholar
6.Chacko, M. & Thomas, P.Y. (2007). Estimation of a parameter of bivariate Pareto distribution by ranked set sampling. Journal of Applied Statistics 34: 703–714.Google Scholar
7.Cheriyan, K.C. (1941). A bivariate correlated gamma-type distribution function. Journal of the Indian Mathematical Society 5: 133–144.Google Scholar
8.Chiragiev, A. & Landsman, Z. (2007). Multivariate Pareto portfolios: TCE-based capital allocation and divided differences. Scandinavian Actuarial Journal 2007: 261–280.Google Scholar
9.Cossette, H., Cote, M.-P., Marceau, E. & Moutanabbir, K. (2013). Risk measures and capital allocation using the Farlie–Gumbel–Morgenstern copula. Insurance: Mathematics and Economics 52: 560–572.Google Scholar
10.Cossette, H., Mailhot, M. & Marceau, E. (2012). TVaR-based capital allocation for multivariate compound distributions. Insurance: Mathematics and Economics 50: 247–256.Google Scholar
11.Cossette, H., Marceau, E. & Perreault, S. (2015). On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation. Insurance: Mathematics and Economics 64: 214–224.Google Scholar
12.Crovelli, R.A. (1973). A bivariate precipitation model. Journal of the American Meteorological Society 1: 130–134.Google Scholar
13.Dhaene, J., Henrard, L., Landsman, Z., Vandendorpe, A. & Vanduffel, S. (2008). Some results on the CTE-based capital allocation rule. Insurance: Mathematics and Economics 42: 855–863.Google Scholar
14.Furman, E. & Landsman, Z. (2005). Risk capital decomposition for a multivariate dependent gamma portfolio. Insurance: Mathematics and Economics 37: 635–649.Google Scholar
15.Furman, E. & Landsman, Z. (2008). Economic capital allocations for non-negative portfolios of dependent risks. ASTIN Bulletin 38: 601–619.Google Scholar
16.Landsman, Z.M. & Valdez, E.A. (2003). Tail conditional expectations for elliptical distributions. North American Actuarial Journal 7: 55–71.Google Scholar
17.Lawrance, A.J. & Lewis, P.A.W. (1980). The exponential autoregressive-moving average EARMA(p, q) process. Journal of the Royal Statistical Society, B 42: 150–161.Google Scholar
18.Lee, H. & Cha, J.H. (2014). On construction of general classes of bivariate distributions. Journal of Multivariate Analysis 127: 151–159.Google Scholar
20.Panjer, H.H. (2002). Measurement of risk, solvency requirements and allocation of capital within financial conglomerates. Research Report, Institute of Insurance and Pension Research, University of Waterloo.Google Scholar
21.Tasche, D. (1999). Risk contributions and performance measurement. Working Paper, Technische Universitatt Mnchen.Google Scholar
22.Unnikrishnan Nair, N. & Sankaran, P.G. (2014). Modelling lifetimes with bivariate Schur-constant equilibrium distributions from renewal theory. Metron 72: 331–349.Google Scholar