Published online by Cambridge University Press: 27 July 2009
A significant amount of recent research has been focused on the stability of multiclass open networks of queues (MONQs). It has been shown that these networks may be unstable under various queueing disciplines even when at each one of the nodes the arrival rate is less than the service rate. Clearly, in such cases the expected delay and the expected number of customers in the system are infinite. In this paper we propose a new class of scheduling rules that can be used in multiclass queueing networks. We refer to this class as the stable shortfall-based priority (SSBP) rules. This SSBP class itself belongs to a larger class of rules, which we refer to as the shortfall-based priority (SBP) rules. SBP is a generalization of the standard non-preemptive priority rule in which customers of the same priority class are served first-come, first-served (FCFS). Rules from SBP can mimic FCFS as well as the so-called strict or head-of-the-line priority disciplines. We show that the use of any rule from the SSBP class ensures stability in a broad class of MONQs found in practice. We proceed with the construction of a sample path inequality for the work done by an SSBP server and show how this inequality can be used to derive upper bounds for the delay when service times are bounded. Bounds for the expected delay of each class of customers in an MONQ are then obtained under the assumptions that the external arrival processes have i.i.d. interarrival times, the routings are deterministic and the service times at each step of the route are bounded. In order to derive these bounds for the average delay in an MONQ we make use of some of the classical ideas of Kingman.