Published online by Cambridge University Press: 27 July 2009
As the formal methods of proving correctness of a computer program are still very inadequate, in practice when a new piece of software is developed and all obvious errors are removed, it is tested with different (random) inputs in order to detect the remaining errors and assess its quality. We suppose that whenever the program fails the error causing the failure can be detected and removed correctly. Thus, the quality of the software increases as testing goes on. In this paper, we consider two different models and present the minimum variance unbiased estimators of the expected failure rate of the revised software at any time of testing t, based on the data generated up to that point.