Published online by Cambridge University Press: 23 January 2017
This paper focuses on the evaluation of the probability that both components of a bivariate stochastic process ever simultaneously exceed some large level; a leading example is that of two Markov fluid queues driven by the same background process ever reaching the set (u, ∞)×(u, ∞), for u>0. Exact analysis being prohibitive, we resort to asymptotic techniques and efficient simulation, focusing on large values of u. The first contribution concerns various expressions for the decay rate of the probability of interest, which are valid under Gärtner–Ellis-type conditions. The second contribution is an importance-sampling-based rare-event simulation technique for the bivariate Markov modulated fluid model, which is capable of asymptotically efficiently estimating the probability of interest; the efficiency of this procedure is assessed in a series of numerical experiments.