No CrossRef data available.
Published online by Cambridge University Press: 31 March 2011
A renewal model in risk theory is considered, where is the tail of the distribution of the deficit at ruin with initial surplus u and is the tail of the ladder height distribution. Conditions are derived under which the ratio is nondecreasing in u for any y≥0. In particular, it is proven that if the ladder height distribution is stable and DFR or phase type, then the above ratio is nondecreasing in u. As a byproduct of this monotonicity, an upper bound and an asymptotic result for are derived. Examples are given to illustrate the monotonicity results.