Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T06:06:05.659Z Has data issue: false hasContentIssue false

DERIVATION OF STARTING SOLUTIONS BASED ON PRODUCT ARCHITECTURE FLEXIBILITY EVALUATION

Published online by Cambridge University Press:  11 June 2020

M. Riesener
Affiliation:
RWTH Aachen University, Germany
C. Dölle
Affiliation:
RWTH Aachen University, Germany
G. Schuh
Affiliation:
RWTH Aachen University, Germany
M. Mendl-Heinisch*
Affiliation:
RWTH Aachen University, Germany
A. Keuper
Affiliation:
RWTH Aachen University, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Manufacturing companies nowadays face growing numbers of heterogeneous customer requirements. Due to that, internal and external complexity lead to an increase in the associated costs. Especially companies with a high Engineer-to-Order business are strongly affected. To reduce external and internal complexity, Starting Solutions are a suitable way to do that. Starting Solutions require on the one hand the evaluation of product flexibility, on the other hand the evaluation of customer requirements. These two requirements are compared to each other and Starting Solutions are thereby derived.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Aleksic, S. (2015), Nachhaltige Weiterentwicklung von modularen Produktarchitekturen durch Release-Management, Dissertation, Ergebnisse aus der Produktionstechnik, 2016, Band 4, 1. Auflage.Google Scholar
Babin, B.J., Darden, W.R. and Griffin, M. (1994), “Work and/or Fun. Measuring Hedonic and Utilitarian Shopping Value”, Journal of Consumer Research, Vol. 20 No. 4, pp. 644656.10.1086/209376CrossRefGoogle Scholar
Bach, N. et al. (2017), Organisation: Gestaltung wertschöpfungsorientierter Architekturen, Prozesse und Strukturen, 2, vollständig überarbeitete und erweiterte Auflage, Springer Gabler, Wiesbaden.10.1007/978-3-658-17169-8CrossRefGoogle Scholar
Böttcher, M. et al. (2009), “Mining changing customer segments in dynamic markets”, Expert Systems with Applications, Vol. 36, pp. 155164.10.1016/j.eswa.2007.09.006CrossRefGoogle Scholar
Eppinger, S. and Salminen, V. (2003), “Patterns of Product Development Interactions”.Google Scholar
Franke, N., Keinz, P. and Schreier, M. (2008), “Complementing Mass Customization Toolkits with User Communities. How Peer Input Improves Customer Self-Design”, Journal of Product Innovation Management, Vol. 25 No. 6, pp. 546559.10.1111/j.1540-5885.2008.00321.xCrossRefGoogle Scholar
Schuh, G. et al. ( et al. “Anforderungen an Starting Solutions in Produktkonfiguratoren im B2B-Bereich”.Google Scholar
Hildebrand, C., Häubl, G. and Herrmann, A. (2014), Product Customization via Starting Solutions, Vol. 51.10.1509/jmr.13.0437CrossRefGoogle Scholar
International Federation for Information Processing, (2017) International Conference on Product Lifecycle Management, IFIP International Conference on Product Lifecycle Management, IFIP PLM and PLM, Product lifecycle management and the industry of the future: 14th IFIP WG 5.1 International Conference, PLM 2017 Seville, Spain, July 10-12, 2017 revised selected papers, IFIP advances in information and communication technology, Vol. 517, Springer, Cham.Google Scholar
Meier, J. (2007), Produktarchitekturtypen globalisierter Unternehmen, Zugl.: Aachen, Techn. Hochsch., Diss., 2007, Berichte aus der Produktionstechnik, Vol. 2007 No. 9, Shaker, Aachen.Google Scholar
Pahl, G. et al. (2007), “Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung”, Methoden und Anwendung, Vol. 7, Aufl., Springer, Berlin, Heidelberg.Google Scholar
Mahdi, R.S. and Rouhollah, R. (2016), “Recommender system based on customer segmentation (RSCS)”, Kybernetes, Vol. 45 No. 6, pp. 946961.Google Scholar
Schoeneberg, K.-P. (2014), Komplexitätsmanagement in Unternehmen: Herausforderungen im Umgang mit Dynamik, Unsicherheit und Komplexität meistern, Springer Gabler, Wiesbaden.10.1007/978-3-658-01284-7CrossRefGoogle Scholar
Schuh, G. (2012), “Innovationsmanagement: Handbuch Produktion und Management 3”, VDI-Buch, 2., vollst. neu bearb. und erw. Aufl., Springer, Berlin, Heidelberg.Google Scholar
Schuh, G. and Riesener, M. (2017), “Produktkomplexität managen: Strategien - Methoden - Tools, 3”, vollständig überarbeitete Auflage, Hanser, München.Google Scholar
Schwartz, B. (2007), “The paradox of choice: Why more is less”, HarperCollins e-books, Pymble, NSW, New York.Google Scholar
Schwartz, B. et al. (2002), Maximizing versus satisficing: Happiness is a matter of choice, Vol. 83.10.1037/0022-3514.83.5.1178CrossRefGoogle Scholar
Stormer, H. (2007), Kundenbasierte Produktkonfiguration, Vol. 30.Google Scholar
Ulrich, K.T. and Eppinger, S.D. (2006), Product design and development, 3. ed., Vol. 5. [print.], McGraw-Hill, Boston, Mass.Google Scholar