Article contents
Active-Learning Combined with Topology Optimization for Top-Down Design of Multi-Component Systems
Published online by Cambridge University Press: 26 May 2022
Abstract
In top-down design, optimal component requirements are difficult to derive, as the feasible components that satisfy these requirements are yet to be designed and hence unknown. Meta models that provide feasibility and mass estimates for component performance are used for optimal requirement decomposition in an existing approach. This paper (1) extends its applicability adapting it to varying design domains, and (2) increases its efficiency by active-learning. Applying it to the design of a robot arm produces a result that is 1% heavier than the reference obtained by monolithic optimization.
Keywords
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2022.
References
- 3
- Cited by