Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T22:07:04.516Z Has data issue: false hasContentIssue false

ANALYSIS OF THE CORRELATION BETWEEN AGILE TEAM MATURITY AND STANDARDISED KEY PERFORMANCE INDICATORS IN AUTOMOTIVE DEVELOPMENT

Published online by Cambridge University Press:  19 June 2023

Franziska Scharold*
Affiliation:
Technical University Dresden;
Julian Schrof
Affiliation:
Bundeswehr University Munich
Kristin Paetzold-Byhain
Affiliation:
Technical University Dresden;
*
Scharold, Franziska, Technical University Dresden, Germany, franziska.scharold@mailbox.tu-dresden.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The application of agile development methods in response to increasing market dynamics and product complexity is a key lever in the automotive industry. Agile methods originally come from the software industry and enable fast, flexible and customer-oriented product development. These methods are also increasingly being used in hardware development. However, the evaluation of the benefits of agile methods in the context of automotive development has been primarily subjective. The publication aims to present a first data-based approach to objectify the benefits of agile methods in automotive development by highlighting the effects in the quality of collaboration within teams. A standardised procedure is therefore designed and presented. On the one hand, a model for measuring the agile maturity of teams is described. On the other hand, the quality of collaboration within a team is examined in different aspects using standardised key performance indicators. Based on the proposed procedure, a strong positive correlation was found between the considered key performance indicators of the quality of collaboration and the agile maturity of the development teams within the investigated organisation.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Albers, A., Heimicke, J., Müller, J. and Spadinger, M. (2019), “Agility and its Features in Mechatronic System Development: A Systematic Literature Review”.Google Scholar
Anderson, D.J. (2010), Kanban: Successful evolutionary change for your technology business, Blue Hole Press, Sequim, Washington.Google Scholar
Bruin, T. de, Rosemann, M., Freeze, R. and Kaulkarni, U. (2005), “Understanding the Main Phases of Developing a Maturity Assessment Model”, in Bunker, D, Campbell, B and Underwood, J (Eds.), Australasian Conference on Information Systems (ACIS), Australasian Chapter of the Association for Information Systems, CD Rom, pp. 819.Google Scholar
CMMI Product Team (2010), “CMMI for Development, Version 1.3. Improving processes for developing better products and services”, SEI Technical Report CMU/SEI-2010-TR-033, available at: https://resources.sei.cmu.edu/asset_files/technicalreport/2010_005_001_15287.pdf.Google Scholar
Cohen, J. (2013), Statistical Power Analysis for the Behavioral Sciences, Routledge. http://doi.org/10.4324/9780203771587CrossRefGoogle Scholar
Cooper, R.G. (1990), “Stage-gate systems: A new tool for managing new products”, Business Horizons, Vol. 33 No. 3, pp. 4454. http://doi.org/10.1016/0007-6813(90)90040-ICrossRefGoogle Scholar
Digital.Ai (2021), “15th Annual State of Agile Report”, available at: https://digital.ai/resource-center/analyst-reports/state-of-agile-report/ (accessed 5 November 2022).Google Scholar
Kelle, U. (2014), “Mixed Methods”, in Baur, N. and Blasius, J. (Eds.), Handbuch Methoden der empirischen Sozialforschung, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 153166. http://doi.org/10.1007/978-3-531-18939-0_8CrossRefGoogle Scholar
Kuster, J., Bachmann, C., Hubmann, M., Lippmann, R. and Schneider, P. (2022), Handbuch Projektmanagement: Agil - Klassisch - Hybrid, 5., vollständig überarb. u. erw. Auflage. https://doi.org/10.1007/978-3-662-65473-6CrossRefGoogle Scholar
Leffingwell, D. (2008), Scaling software agility: Best practices for large enterprises, The agile software development series, 3rd print, Addison-Wesley, Upper Saddle River, N.J.Google Scholar
Leppänen, M. (2013), “A Comparative Analysis of Agile Maturity Models”, in Pooley, R., Coady, J., Schneider, C., Linger, H., Barry, C. and Lang, M. (Eds.), Information Systems Development, Springer New York, New York, NY, pp. 329343. http://doi.org/10.1007/978-1-4614-4951-5_27CrossRefGoogle Scholar
Mayring, P. (2001), “Kombination und Integration qualitativer und quantitativer Analyse”, Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, Vol 2, No 1 (2001). http://doi.org/10.17169/FQS-2.1.967Google Scholar
Michalides, M., Nicklas, S.J., Weiss, S. and Paetzold-Byhain, K. (2022), Agile Entwicklung physischer Produkte.Google Scholar
Nicklas, S.J., Michalides, M., Atzberger, A., Weiss, S. and Paetzold, K. (2021), Agile Entwicklung physischer Produkte 2021: Eine Studie zum aktuellen Stand in der industriellen Praxis während der COVID-19-Pandemie, Universitätsbibliothek der Universität der Bundeswehr München, Neubiberg. https://doi.org/10.18726/2021_3CrossRefGoogle Scholar
Ovesen, N. (2012), “The Challenges of Becoming Agile”, PhD Thesis, Aalborg University, 2012.Google Scholar
Ozcan-Top, O. and Demirörs, O. (2013), “Assessment of Agile Maturity Models: A Multiple Case Study”, in Woronowicz, T., Rout, T., O'Connor, R.V. and Dorling, A. (Eds.), Software Process Improvement and Capability Determination, Communications in Computer and Information Science, Vol. 349, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 130141. http://doi.org/10.1007/978-3-642-38833-0_12CrossRefGoogle Scholar
Patel, C. and Ramachandran, M. (2009), “Agile Maturity Model (AMM): A Software Process Improvement framework for Agile Software Development Practices”, International Journal of Software Engineering, Vol. 2.Google Scholar
Petersen, K. (2010), “An Empirical Study of Lead-Times in Incremental and Agile Software Development”, in Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Münch, J., Yang, Y. and Schäfer, W. (Eds.), New Modeling Concepts for Today's Software Processes, Lecture Notes in Computer Science, Vol. 6195, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 345356. http://doi.org/10.1007/978-3-642-14347-2_30CrossRefGoogle Scholar
Rozenes, S., Vitner, G. and Spraggett, S. (2006), “Project Control: Literature Review”, Project Management Journal, Vol. 37 No. 4, pp. 514. http://doi.org/10.1177/875697280603700402CrossRefGoogle Scholar
Schmidt, T.S. and Paetzold, K. (2017), “Maturity assessment of teams developing physical products in an agile manner”, in 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), 27.06.2017 - 29.06.2017, Funchal, IEEE, pp. 351360. http://doi.org/10.1109/ICE.2017.8279907CrossRefGoogle Scholar
Schmidt, T.S., Weiss, S. and Paetzold, K. (2018), Agile Development of Physical Products: An Empirical Study about Motivations, Potentials and Applicability, Universitätsbibliothek der Universität der Bundeswehr München, Neubiberg.Google Scholar
Schmitt, A., Theobald, S. and Diebold, P. (2019), “Comparison of Agile Maturity Models”, in Franch, X., Männistö, T. and Martínez-Fernández, S. (Eds.), Product-Focused Software Process Improvement, Lecture Notes in Computer Science, Vol. 11915, Springer International Publishing, Cham, pp. 661671. http://doi.org/10.1007/978-3-030-35333-9_52CrossRefGoogle Scholar
Schober, P., Boer, C. and Schwarte, L.A. (2018), “Correlation Coefficients: Appropriate Use and Interpretation”, Anesthesia and analgesia, Vol. 126 No. 5, pp. 17631768. http://doi.org/10.1213/ane.0000000000002864CrossRefGoogle ScholarPubMed
Schwaber, K. and Sutherland, J. (2020), “The Scrum Guide”, available at: https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100 (accessed 2 October 2022).Google Scholar
Schweigert, T., Vohwinkel, D., Korsaa, M., Nevalainen, R. and Biro, M. (2013), “Agile Maturity Model: A Synopsis as a First Step to Synthesis”, in McCaffery, F., O'Connor, R.V. and Messnarz, R. (Eds.), Systems, Software and Services Process Improvement, Communications in Computer and Information Science, Vol. 364, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 214227. http://doi.org/10.1007/978-3-642-39179-8_19Google Scholar
Snowden, D.J. and Boone, M.E. (2007), “A leader's framework for decision making.”, Harvard business review, Vol. 85 No. 11, 68-76, 149.Google ScholarPubMed
VDI (2021), Development of mechatronic and cyber-physical systems No. VDI/VDE 2206:2021-11, Beuth, Berlin.Google Scholar