No CrossRef data available.
Article contents
Approaches to reducing gear mass and their effects on gearing stresses and deformations
Published online by Cambridge University Press: 16 May 2024
Abstract
This study compares empirical and topology optimization methods for reducing gear body mass. Specimens produced via empirical guidelines and topology optimization were compared to referent full-disc gear, focusing on stresses and deformations. Values were determined numerically (Ansys was used) and the calculation method was verified using ISO 6336. The empirical approach exhibited substantial increases in stress and deformation while topology optimization method had promising outcomes. While decreasing mass, it also diminished tooth root stress on the tensile side by 17.1%.
- Type
- Engineering Design Practice
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2024.