Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T14:10:15.846Z Has data issue: false hasContentIssue false

Design Principles and Multi-Level Structures for Multi-Functional and Multi-Material Design

Published online by Cambridge University Press:  26 May 2022

T. Fröhlich*
Affiliation:
Technische Universität Braunschweig, Germany
T. Vietor
Affiliation:
Technische Universität Braunschweig, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multi-functional design has high potential to overcome e.g. increasing weight and costs of products. However, the possible solution space for integrating functions is hardly manageable. This paper presents an approach to assist in the identification of multi-functional approaches. Therefore, hybrid design principles are developed that are combinable to complex structures including specific manufacturing routes. By this, multi-functional solutions can be provided on different resolutions in order to identify the most promising approach and position for the integration of additional functions.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Adam, T., Liao, G., Petersen, J., Geier, S., Finke, B., Wierach, P., Kwade, A. and Wiedemann, M. (2018), “Multifunctional Composites for Future Energy Storage in Aerospace Structures”, Energies, Vol. 11 No. 2, p. 335. 10.3390/en11020335CrossRefGoogle Scholar
Altach, J., Bader, B., Fröhlich, T., Klaiber, D. and Vietor, T. (2020), “Development of a design catalogue for the characteristics- and properties-based selection of generic car body components”, Procedia CIRP, Vol. 91, pp. 917926. 10.1016/j.procir.2020.03.124CrossRefGoogle Scholar
Ashby, M.F. and Bréchet, Y. (2003), “Designing hybrid materials”, Acta Materialia, Vol. 51 No. 19, pp. 58015821. 10.1016/S1359-6454(03)00441-5CrossRefGoogle Scholar
Bader, B., Türck, E. and Vietor, T. (2019), “MULTI MATERIAL DESIGN. A CURRENT OVERVIEW OF THE USED POTENTIAL IN AUTOMOTIVE INDUSTRIES”, in Dröder, K. and Vietor, T. (Eds.), Technologies for economical and functional lightweight design, Zukunftstechnologien für den multifunktionalen Leichtbau, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 313. 10.1007/978-3-662-58206-0_1Google Scholar
Baracchini, P., Guillebaud, C., Kromm, F.-X. and Wargnier, H. (2019), “Multi-material Design in the Case of a Coupled Selection of Architectures and Materials: Application to Embedded Electronic Packaging”, Journal of Materials Engineering and Performance, Vol. 43 No. 6, p. 730. 10.1007/s10853-020-04778-1Google Scholar
Elspass, W.J. and Flemming, M. (1998), Aktive Funktionsbauweisen, Springer Berlin Heidelberg, Berlin, Heidelberg. 10.1007/978-3-642-58758-0Google Scholar
Feng, Y., Qiu, H., Gao, Y., Zheng, H. and Tan, J. (2020), “Creative design for sandwich structures: A review”, International Journal of Advanced Robotic Systems, Vol. 17 No. 3, 172988142092132. 10.1177/1729881420921327CrossRefGoogle Scholar
Fröhlich, T., Klaiber, D., Türck, E. and Vietor, T. (2019), “Function in a box: An approach for multi-functional design by function integration and separation”, Procedia CIRP, Vol. 84, pp. 611617. 10.1016/j.procir.2019.04.343CrossRefGoogle Scholar
Gumpinger, T., Jonas, H. and Krause, D. (2009), “New Approach for Lightweight Design: From Differential Design to Integration of Function”, DS 58-6: Proceedings of ICED 09, the 17th International Conference on Engineering Design, Vol. 6, Design Methods and Tools (pt. 2), Palo Alto, CA, USA, 24.-27.08.2009, pp. 201210. 10.1007/978-3-662-62924-6_12Google Scholar
Hannemann, B., Backe, S., Schmeer, S., Balle, F. and Breuer, U.P. (2016), “Metal fiber incorporation in carbon fiber reinforced polymers (CFRP) for improved electrical conductivity”, Materialwissenschaft und Werkstofftechnik, Vol. 47 No. 11, pp. 10151023. 10.1002/mawe.201600627CrossRefGoogle Scholar
Hilbig, K., Watschke, H. and Vietor, T. (2021), “Design of Additively Manufactured Heat-Generating Structures”, in Dröder, K. and Vietor, T. (Eds.), Technologies for economic and functional lightweight design, Zukunftstechnologien für den multifunktionalen Leichtbau, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 142155. 10.1007/978-3-662-62924-6_12Google Scholar
Hoßfeld, M. and Ackermann, C. (2020), Leichtbau durch Funktionsintegration, Springer Berlin Heidelberg, Berlin, Heidelberg. 10.1007/978-3-662-59823-8Google Scholar
Klaiber, D., Fröhlich, T. and Vietor, T. (2019), “Strategies for function integration in engineering design: from differential design to function adoption”, Procedia CIRP, Vol. 84, pp. 599604. 10.1016/j.procir.2019.04.344Google Scholar
Kroll, L. (2019a) Hybride Bauweisen und Technologien, in: Kroll, L. (Ed.), Technologiefusion für multifunktionale Leichtbaustrukturen. Springer Vieweg, Berlin, Heidelberg, pp. 940. 10.1007/978-3-662-54734-2_2Google Scholar
Kroll, L. (2019b) Mikro- und Nanosystemintegration in Leichtbaustrukturen, in: Kroll, L. (Ed.), Technologiefusion für multifunktionale Leichtbaustrukturen. Springer Vieweg, Berlin, Heidelberg, pp. 417519. 10.1007/978-3-662-54734-2_6Google Scholar
Palomba, G., Epasto, G. and Crupi, V. (2021), “Lightweight sandwich structures for marine applications: a review”, Mechanics of Advanced Materials and Structures, pp. 126. 10.1080/15376494.2021.1941448Google Scholar
Pototzky, A., Stefaniak, D. and Hühne, C. (2019), “POTENTIALS OF LOAD CARRYING CONDUCTOR TRACKS IN NEW VEHICLE STRUCTURES”, in Dröder, K. and Vietor, T. (Eds.), Technologies for economical and functional lightweight design, Zukunftstechnologien für den multifunktionalen Leichtbau, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 7990. 10.1007/978-3-662-58206-0_8Google Scholar
Roth, K. (2000), Konstruieren mit Konstruktionskatalogen: Band 1: Konstruktionslehre, 3. Edition, Springer, Berlin. 10.1007/978-3-642-17466-7Google Scholar
Schumacher, F., Watschke, H., Kuschmitz, S. and Vietor, T. (2019), "Goals Oriented Provision of Design Principles for Additive Manufacturing to Support Conceptual Design", in: Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 749758. . 10.1017/dsi.2019.79Google Scholar
Tarlochan, F. (2021), “Sandwich Structures for Energy Absorption Applications: A Review”, Materials (Basel, Switzerland), Vol. 14 No. 16. 10.3390/ma14164731Google ScholarPubMed
Weißbach, W., Dahms, M. and Jaroschek, C. (2018), Werkstoffe und ihre Anwendungen: Metalle, Kunststoffe und mehr, Lehrbuch, 20. Edition, Springer Vieweg, Wiesbaden. 10.1007/978-3-658-19892-3CrossRefGoogle Scholar
Wiedemann, J. (2007), Leichtbau: Elemente und Konstruktion, Klassiker der Technik, 3. Edition, Springer, Berlin, Heidelberg. 10.1007/978-3-540-33657-0Google Scholar