Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T10:41:54.151Z Has data issue: false hasContentIssue false

Design Rules for Laser Beam Melted Particle Dampers

Published online by Cambridge University Press:  26 May 2022

T. Ehlers*
Affiliation:
Leibniz Universität Hannover, Germany
R. Lachmayer
Affiliation:
Leibniz Universität Hannover, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By means of additive manufacturing, especially laser powder bed fusion, particle dampers can be integrated locally into structural components and thus significantly reduce component vibrations. However, detailed design recommendations for additively manufactured particle dampers do not yet exist. The research question in this paper is: How can the effect of particle damping be described as a function of excitation force, cavity width and cavity length? For beams made of AlSi10Mg, it is shown that a powder-filled cavity of 2.5% to 5% is sufficient to increase the damping by more than x10.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Ashby, M.F. and Cebon, D. (1993), “Materials selection in mechanical design”, Le Journal de Physique IV, Vol. 03 No. C7, C7-1C7-9. 10.1051/jp4:1993701.Google Scholar
Ehlers, T. and Lachmayer, R. (2020), “Einsatz additiv gefertigter Partikeldämpfer – eine Übersicht”, in Lachmayer, R., Rettschlag, K. and Kaierle, S. (Eds.), Konstruktion für die Additive Fertigung 2019, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 123142. 10.1007/978-3-662-61149-4_9.CrossRefGoogle Scholar
Ehlers, T. and Lachmayer, R. (2021), “Design of a Motorcycle Triple Clamp Optimised for Stiffness and Damping”, in Pfingstl, S., Horoschenkoff, A., Höfer, P. and Zimmermann, M. (Eds.), Proceedings of the Munich Symposium on Lightweight Design 2020, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 117. 10.1007/978-3-662-63143-0_1.Google Scholar
Ehlers, T. and Lachmayer, R. (2022), “Design of Particle Dampers for Laser Powder Bed Fusion”, Applied Sciences, Vol. 12 No. 4. 10.3390/app12042237.Google Scholar
Ehlers, T., Lachmayer, R., Vajna, S. and Halle, T. (2020), “Producibility”, in Vajna, S. (Ed.), Integrated Design Engineering, Springer International Publishing, Cham, pp. 287323. 10.1007/978-3-030-19357-7_9.CrossRefGoogle Scholar
Ehlers, T., Tatzko, S., Wallaschek, J. and Lachmayer, R. (2021), “Design of particle dampers for additive manufacturing”, Additive Manufacturing, Vol. 38, p. 101752. 10.1016/j.addma.2020.101752.CrossRefGoogle Scholar
Ewins, D.J. (2000), Modal testing: Theory, practice and application, Mechanical engineering research studies Engineering dynamics series, Vol. 10, 2. ed., Research Studies Press, Baldock.Google Scholar
Hanselka, H. (2001), “Adaptronics as a Key Technology for Intelligent Lightweight Structures”, Advanced Engineering Materials, Vol. 3 No. 4, pp. 205215. 10.1002/1527-2648(200104)3:4<205::AID-ADEM205>3.0.CO;2-H.3.0.CO;2-H>CrossRefGoogle Scholar
Hollkamp, J.J. and Gordon, R.W. (1998), “Experiments with particle damping”, in Davis, L.P. (Ed.), Smart Structures and Materials 1998: Passive Damping and Isolation, Sunday 1 March 1998, San Diego, CA, SPIE, pp. 212. 10.1117/12.310675.Google Scholar
Kumke, M. (Ed.) (2018), Methodisches Konstruieren von additiv gefertigten Bauteilen, Springer Fachmedien Wiesbaden, Wiesbaden. 10.1007/978-3-658-22209-3.CrossRefGoogle Scholar
Künneke, T. and Zimmer, D. (2017), “Funktionsintegration additiv gefertigter Dämpfungsstrukturen bei Biegeschwingungen”, in Richard, H.A., Schramm, B. and Zipsner, T. (Eds.), Additive Fertigung von Bauteilen und Strukturen, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 6174. 10.1007/978-3-658-17780-5_4.CrossRefGoogle Scholar
Künneke, T. and Zimmer, D. (2021), “Konstruktionsregeln für additiv gefertigte Partikeldämpfer/Design rules for additive manufactured particle dampers”, Konstruktion, Vol. 73 No. 11-12, pp. 7278. 10.37544/0720-5953-2021-11-12-72.CrossRefGoogle Scholar
Lachmayer, R., Gembarski, P.C., Gottwald, P. and Lippert, R.B. (2017), “The Potential of Product Customization Using Technologies of Additive Manufacturing”, in Bellemare, J., Carrier, S., Nielsen, K. and Piller, F.T. (Eds.), Managing Complexity, Springer Proceedings in Business and Economics, Springer International Publishing, Cham, pp. 7181. 10.1007/978-3-319-29058-4_6.Google Scholar
Lachmayer, R. and Lippert, R.B. (2020), Entwicklungsmethodik für die Additive Fertigung, Springer Berlin Heidelberg, Berlin, Heidelberg. 10.1007/978-3-662-59789-7.Google Scholar
Lu, Z., Wang, Z., Masri, S.F. and Lu, X. (2017), “Particle impact dampers: Past, present, and future”, Structural Control and Health Monitoring, Vol. 25 No. 1, e2058. 10.1002/stc.2058.Google Scholar
Papalou, A. and Masri, S.F. (1996), “Performance of Particle Dampers Under Random Excitation”, Journal of Sound and Vibration, Vol. 118 No. 4, pp. 614621. 10.1115/1.2888343.Google Scholar
Reiher, T. (2019), “Intelligente Optimierung von Produktgeometrien für die additive Fertigung”, Dissertation, Shaker Verlag, 2019.Google Scholar
Saeki, M. (2005), “Analytical study of multi-particle damping”, Journal of Sound and Vibration, Vol. 281 No. 3-5, pp. 11331144. 10.1016/j.jsv.2004.02.034.CrossRefGoogle Scholar
Schmitz, T., Gomez, M., Ray, B., Heikkenen, E., Sisco, K., Haines, M. and Osborne, J.S. (2020), “Damping and mode shape modification for additively manufactured walls with captured powder”, Precision Engineering, Vol. 66, pp. 110124. 10.1016/j.precisioneng.2020.07.002.Google Scholar
Scott-Emuakpor, O., Beck, J., Runyon, B. and George, T. (2021), “Determining unfused powder threshold for optimal inherent damping with additive manufacturing”, Additive Manufacturing, Vol. 38, p. 101739. 10.1016/j.addma.2020.101739.CrossRefGoogle Scholar
Scott-Emuakpor, O., George, T., Runyon, B., Holycross, C., Langley, B., Sheridan, L., O'Hara, R., Johnson, P. and Beck, J. (2018), “Investigating Damping Performance of Laser Powder Bed Fused Components With Unique Internal Structures”, in Volume 7C: Structures and Dynamics, V07CT35A020. 10.1115/GT2018-75977.Google Scholar
Scott-Emuakpor, O., George, T., Runyon, B., Langley, B., Sheridan, L., Holycross, C., O'Hara, R. and Johnson, P. (2019), “Forced-Response Verification of the Inherent Damping in Additive Manufactured Specimens”, in Kramer, S., Jordan, J.L., Jin, H., Carroll, J. and Beese, A.M. (Eds.), Mechanics of Additive and Advanced Manufacturing, Volume 8, Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 264, Springer International Publishing, Cham, pp. 8186. 10.1007/978-3-319-95083-9_15.Google Scholar
Wiberg, A., Persson, J. and Ölvander, J. (2019), “Design for additive manufacturing – a review of available design methods and software”, Rapid Prototyping Journal, Vol. 25 No. 6, pp. 10801094. 10.1108/RPJ-10-2018-0262.Google Scholar
Wurst, J., Schneider, J.A., Ehlers, T., Mozgova, I. and Lachmayer, R. (2022), “Corporate Strategy Based Quantitative Assessment of Sustainability Indicators at the Example of a Laser Powder Bed Fusion Process”, in Scholz, S.G., Howlett, R.J. and Setchi, R. (Eds.), Sustainable Design and Manufacturing, Smart Innovation, Systems and Technologies, Vol. 262, Springer Singapore, Singapore, pp. 3444. 10.1007/978-981-16-6128-0_4.Google Scholar
Yang, S., Tang, Y. and Zhao, Y.F. (2015), “A new part consolidation method to embrace the design freedom of additive manufacturing”, Journal of Manufacturing Processes, Vol. 20, pp. 444449. 10.1016/j.jmapro.2015.06.024.Google Scholar