Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T14:41:02.555Z Has data issue: false hasContentIssue false

Detection of Cause-Effect Relationships in Life Cycle Sustainability Assessment Based on an Engineering Graph

Published online by Cambridge University Press:  26 May 2022

G. M. Schweitzer*
Affiliation:
Fresenius Medical Care, Germany
S. Mörsdorf
Affiliation:
Saarland University, Germany
M. Bitzer
Affiliation:
Fresenius Medical Care, Germany
M. Vielhaber
Affiliation:
Saarland University, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although Life Cycle Sustainability Assessments (LCSA) are important in evaluating the sustainability of complex products and services, there is no sufficient support for engineers performing LCSA. The concept of an Engineering Graph focuses on the relations of data within engineering. It provides a model that leverages existing data in engineering and extendibility to include specialized databases and open and public data from the semantic web. This paper proposes a concept of how Engineering Graphs can be used to address the issues of LCSA and support engineers.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Angles, R., Gutierrez, C., 2008. Survey of graph database models. ACM Comput. Surv. 40, 1:11:39. 10.1145/1322432.1322433CrossRefGoogle Scholar
Angles, R., Gutierrez, C., 2005. Querying RDF Data from a Graph Database Perspective, in: Gómez-Pérez, A., Euzenat, J. (Eds.), The Semantic Web: Research and Applications, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 346360. 10.1007/11431053_24CrossRefGoogle Scholar
Bajaj, M., Backhaus, J., Walden, T., Waikar, M., Zwemer, D., Schreiber, C., Issa, G., Martin, L., 2017. Graph-Based Digital Blueprint for Model Based Engineering of Complex Systems. INCOSE International Symposium 27, 151169.Google Scholar
Bare, J., Hofstetter, P., Pennington, D., Haes, H., 2012. Midpoints Versus Endpoints: The Sacrifices and Benefits. Int. J. Life Cycle Ass. 5, 319326. 10.1007/BF02978665Google Scholar
Benoît, C., Mazijn, B., United Nations Environment Programme, CIRAIG, Interuniversity Research Centre for the Life Cycle of Producs, P. and S., 2013. Guidelines for social life cycle assessment of products. United Nations Environment Programme, Paris, France.Google Scholar
Norris, Benoît, Traverso, C., Neugebauer, M., Ekener, S., Schaubroeck, E., Russo Garrido, T., Berger, S., Valdivia, M., Lehmann, S., Finkbeiner, A., , M., Arcese, G., 2020. Guidelines for Social Life Cycle Assessment of Products and Organizations.Google Scholar
Bitzer, M., Eigner, M., Faißt, K.-G., Muggeo, C., Eickhoff, T., 2017. Framework of the evolution in virtual product modelling and model management towards digitized engineering. DS 87-6 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 6: Design Information and Knowledge, Vancouver, Canada, 21-25.08.2017.Google Scholar
Bougain, S., Gerhard, D., 2017. Integrating Environmental Impacts with SysML in MBSE Methods. Procedia CIRP, The 24th CIRP Conference on Life Cycle Engineering 61, 715720. 10.1016/j.procir.2016.11.196Google Scholar
Buchert, T., Pförtner, A., Bonvoisin, J., Lindow, K., Stark, R., 2016. MODEL-BASED SUSTAINABLE PRODUCT DEVELOPMENT. DS 84: Proceedings of the DESIGN 2016 14th International Design Conference 145–154.Google Scholar
Costa, D., Quinteiro, P., Dias, A.C., 2019. A systematic review of life cycle sustainability assessment: Current state, methodological challenges, and implementation issues. Science of The Total Environment 686, 774787. 10.1016/j.scitotenv.2019.05.435Google ScholarPubMed
DIN EN ISO 14040, 2009. DIN EN ISO 14040:2009-11, Umweltmanagement_- Ökobilanz_- Grundsätze und Rahmenbedingungen (ISO_14040:2006); Deutsche und Englische Fassung EN_ISO_14040:2006. Beuth Verlag GmbH. 10.31030/1555059Google Scholar
Dumitrescu, R., Albers, A., Riedel, O., Stark, R., Gausemeier, J., 2021. Engineering in Deutschland – Status quo in Wirtschaft und Wissenschaft, Ein Beitrag zum Advanced Systems Engineering,.Google Scholar
Eickhoff, T., Eiden, A., Göbel, J.C., Eigner, M., 2020. A Metadata Repository for Semantic Product Lifecycle Management. Procedia CIRP, Enhancing design through the 4th Industrial Revolution Thinking 91, 249254.Google Scholar
Eiden, A., Gries, J., Eickhoff, T., Göbel, J.C., 2020. Anforderungen an ein Daten-Backend-System zur Unterstützung industrieller Datenanalyse-Anwendungen in digitalen Engineering-Prozessen dynamischer Wertschöpfungsnetzwerke, in: Proceedings of the 31st Symposium Design for X (DFX2020). Presented at the DFX 2020 31st SYMPOSIUM DESIGN FOR X, pp. 8190.Google Scholar
Eigner, M., 2016. Das Industrial Internet, in: Sendler, U. (Ed.), Industrie 4.0 Grenzenlos. Springer Vieweg, Berlin, Heidelberg, pp. 137–168. 10.1007/978-3-662-48278-0_9Google Scholar
Estefan, J.A., 2007. Survey of model-based systems engineering (MBSE) methodologies. Incose MBSE Focus Group 25, 112.Google Scholar
Finkbeiner, M., Schau, E.M., Lehmann, A., Traverso, M., 2010. Towards Life Cycle Sustainability Assessment. Sustainability 2, 33093322. 10.3390/su2103309Google Scholar
Google, 2021. Google Knowledge Graph Search API [WWW Document]. Google Developers. URL https://developers.google.com/knowledge-graph?hl=de (accessed 11.12.21).Google Scholar
Hunkeler, D., Rebitzer, G., 2003. Life Cycle costing — paving the road to sustainable development? Int J LCA 8, 109. 10.1007/BF02978435CrossRefGoogle Scholar
Kloepffer, W., 2008. Life cycle sustainability assessment of products: (with Comments by Helias A. Udo de Haes, p. 95). Int J Life Cycle Assess 13, 8995. 10.1065/lca2008.02.376Google Scholar
Korthals, K., Auricht, M., Felten, M., 2020. Systems Engineering Solution Lab - Experience Model based Systems Engineering at CLAAS.Google Scholar
LifeCycleInitiative.org, 2022. Interactive map of LCA databases. Life Cycle Initiative. URL https://www.lifecycleinitiative.org/applying-lca/lca-databases-map/ (accessed 2.10.22).Google Scholar
Mondejar, M.E., Avtar, R., Diaz, H.L.B., Dubey, R.K., Esteban, J., Gómez-Morales, A., Hallam, B., Mbungu, N.T., Okolo, C.C., Prasad, K.A., She, Q., Garcia-Segura, S., 2021. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Science of The Total Environment 794, 148539. 10.1016/j.scitotenv.2021.148539CrossRefGoogle Scholar
Nakicenovic, N., Messner, D., Zimm, C., Clarke, G., Rockström, J., Aguiar, A.P.D., Boza-Kiss, B., Campagnolo, L., Chabay, I., Collste, D., Comolli, L., Gomez-Echeverri, L., Goujon, A., Grubler, A., Jung, R., Kamei, M., Kamiya, G., Kriegler, E., Kuhn, M., Leininger, J., Martin-Shields, C., Mayor Rodriguez, B., Miller, J., Miola, A., Riahi, K., Schewenius, M., Schmidt, J., Skierka, K., Selomane, O., Svedin, U., Yillia, P., Arimoto, T., Colglazier, B., Contejean, A., Dombrowsky, I., Jaluka, T., Lotze-Campen, H., Murray, K., Noussan, M., Roco, M., Spini, L., Stoeckle, M., Van Der Leuw, S., Van Vuuren, D.P., Zusman, E., 2019. The Digital Revolution and Sustainable Development: Opportunities and Challenges. Report prepared by the World in 2050 initiative. 10.22022/TNT/05-2019.15913Google Scholar
Rawat, D.S., Kashyap, N.K., 2017. Graph database: a complete GDBMS survey. Int. J 3, 217226.Google Scholar
Remmen, A., Jensen, A.A., Frydendal, J., 2007. Life cycle management: a business guide to sustainability. United Nations Environment Programme, Nairobi, Kenya.Google Scholar
Schweitzer, G.M., Bitzer, M., Vielhaber, M., 2020. Produktentwicklung: KI-ready? Zeitschrift für wirtschaftlichen Fabrikbetrieb 115, 873876. 10.3139/104.112464Google Scholar
Flour, St, Bokhoree, P.O., C., 2021. Sustainability Assessment Methodologies: Implications and Challenges for SIDS. Ecologies 2, 285304. 10.3390/ecologies2030016Google Scholar
UN General Assembly, 2021. Transforming our world: the 2030 Agenda for Sustainable Development [WWW Document]. Refworld. URL https://www.refworld.org/docid/57b6e3e44.html (accessed 11.12.21).Google Scholar
United Nations Environment Programme, 2016. Global Guidance for Life Cycle Impact Assessment Indicators and Methods - Volume 1.Google Scholar
United Nations Environment Programme, 2004. Why Take A Life Cycle Approach.Google Scholar
Valdivia, S., Backes, J.G., Traverso, M., Sonnemann, G., Cucurachi, S., Guinée, J.B., Schaubroeck, T., Finkbeiner, M., Leroy-Parmentier, N., Ugaya, C., Peña, C., Zamagni, A., Inaba, A., Amaral, M., Berger, M., Dvarioniene, J., Vakhitova, T., Benoit-Norris, C., Prox, M., Foolmaun, R., Goedkoop, M., 2021. Principles for the application of life cycle sustainability assessment. Int J Life Cycle Assess. 10.1007/s11367-021-01958-2Google Scholar
Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D., 2010. A comparison of a graph database and a relational database: a data provenance perspective, in: Proceedings of the 48th Annual Southeast Regional Conference, ACM SE ’10. Association for Computing Machinery, New York, NY, USA, pp. 16. 10.1145/1900008.1900067Google Scholar
Wikimedia, 2021. Wikimedia Foundation [WWW Document]. Wikimedia Foundation. URL https://wikimediafoundation.org/ (accessed 11.12.21).Google Scholar
World Health Organization, 2021. Health System Building Blocks [WWW Document]. URL https://extranet.who.int/nhptool/Default.aspx (accessed 11.12.21).Google Scholar