Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T17:19:13.555Z Has data issue: false hasContentIssue false

EFFICIENT FORMALISATION OF TECHNICAL REQUIREMENTS FOR GENERATIVE ENGINEERING

Published online by Cambridge University Press:  19 June 2023

Iris Gräßler
Affiliation:
Heinx Nixdorf Institute / Paderborn University
Daniel Preuß*
Affiliation:
Heinx Nixdorf Institute / Paderborn University
Lukas Brandt
Affiliation:
Atos Information Technology GmbH
Michael Mohr
Affiliation:
EDAG Engineering GmbH
*
Preuß, Daniel, Heinx Nixdorf Institute / Paderborn University, Germany, daniel.preuss@hni.upb.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Currently, engineers need to manually analyse requirement specifications for determining parameters to create geometries in generative engineering. This analysis is time-consuming, error-prone and causes high costs. Generative engineering tools (e.g. Synera) cannot interpret natural language requirements directly. The requirements need to be formalised in a machine-readable format. AI algorithms have the potential to automatically transform natural language requirements into such a formal, machine-readable representation. In this work, a method for formalising requirements for generative engineering is developed and implemented as a prototype in Python. The method is validated in a case example using three products of an automotive engineering service provider. Requirements to be formalised are identified in the specifications of these three products, which are used as a test set to evaluate the performance of the method. The results show that requirements for generative engineering are formalised with high performance (F1 of 86.55 %). By applying the method, efforts and therefore costs for manually analysing requirements regarding parameters for generative engineering are reduced.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Alpaydın, E. (2019), Maschinelles Lernen, De Gruyter Studium, Vol. 2, De Gruyter Oldenbourg, Berlin.Google Scholar
Ambriola, V. and Gervasi, V. (2006), “On the Systematic Analysis of Natural Language Requirements with C IRCE”, Automated Software Engineering, Vol. 13 No. 1. https://doi.org/10.1007/s10515-006-5468-2CrossRefGoogle Scholar
Casamayor, A., Godoy, D. and Campo, M. (2010), “Identification of non-functional requirements in textual specifications”, Information and Software Technology, Vol. 52 No. 4, pp. 436445. https://doi.org/10.1016/j.infsof.2009.10.010CrossRefGoogle Scholar
Ceccato, M., Kiyavitskaya, N., Zeni, N., Mich, L. and Berry, D. M. (2004), Ambiguity Identification and Measurement in Natural Language Texts, Technical report.Google Scholar
Du, X., Rush, A. M. and Cardie, C. (2021), “Template Filling with Generative Transformers”, Proceedings of the North American Chapter of the Association for Computational Linguistics, pp. 909914. http://dx.doi.org/10.18653/v1/2021.naacl-main.70CrossRefGoogle Scholar
GmbH, Synera (2022), “Synera”, available at: https://www.synera.io/ (accessed 13 November 2022).Google Scholar
Fellbaum, C. (2005), “WordNet and wordnets”, Encyclopedia of Language and Linguistics, No. 2, pp. 665-670.Google Scholar
Fernandes, J., Henriques, E., Silva, A. and Moss, M.A. (2015), “Requirements change in complex technical systems. An empirical study of root causes”, Research in Engineering Design, Vol. 26 No. 1, pp. 3755. http://dx.doi.org/10.1007/s00163-014-0183-7CrossRefGoogle Scholar
Giannakopoulou, D., Pressburger, T., Mavridou, A. and Schumann, J. (2021), “Automated formalization of structured natural language requirements”, Information and Software Technology, Vol. 137 No. 2. https://doi.org/10.1016/j.infsof.2021.106590CrossRefGoogle Scholar
Giantamidis, G., Papanikolaou, G., Miranda, M., Salinas-Hernando, G., Valverde-Alcala, J., Veluru, S., and Basagiannis, S. (2021), “ReForm: A Tool for Rapid Requirements Formalization”, Electronic Communications of the EASST, Vol. 79 No. 0. http://dx.doi.org/10.14279/tuj.eceasst.79.1117Google Scholar
Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N. and Steiner, W. (2014), ARSENAL: Automatic Requirements Specification Extraction from Natural Language. https://doi.org/10.48550/arXiv.1403.3142CrossRefGoogle Scholar
Gräßler, I. (2003), “Impacts of Information Management on Customized Vehicles and After Sales Services”, International Journal of Computer Integrated Manufacturing, Vol. 16 No. 7-8, pp. 566570. https://doi.org/10.1080/0951192031000115714CrossRefGoogle Scholar
Gräßler, I. (2017), “A new V-Model for interdisciplinary product engineering”, Engineering for a changing world, Ilmenau Scientific Colloquium, 11.09.-15.09., Ilmenau, Germany.Google Scholar
Gräßler, I., Dattner, M., Bothen, M. and Bothen, M. (2018), “Main Feature List as core success criteria of organizing Requirements Elicitation”, R&D Management Conference, 30.06.-04.07., Milan, Italy. http://dx.doi.org/10.31224/osf.io/grfcnCrossRefGoogle Scholar
Gräßler, I., Hentze, J. and Yang, X. (2016), “Eleven Potentials for Mechatronic V-Model”, 6th International Conference Production Engineering and Management, 29.09.-30.09., Lemgo, Germany.Google Scholar
Gräßler, I., Oleff, C. and Scholle, P. (2020), “Method for Systematic Assessment of Requirement Change Risk in Industrial Practice”, Applied Sciences, Vol. 10 No. 23, p. 8697. https://doi.org/10.3390/app10238697Google Scholar
Gräßler, I. and Pöhler, A. (2020), “Produktentstehung im Zeitalter von Industrie 4.0”, Handbuch Gestaltung digitaler und vernetzter Arbeitswelten, Springer Berlin Heidelberg, pp. 383403. https://doi.org/10.1007/978-3-662-52979-9_23CrossRefGoogle Scholar
Gräßler, I., Wiechel, D., Koch, A.-S., Preuß, D. and Oleff, C. (2022), “Model-based effect-chain analysis for complex systems”, Proceedings of the Design Society: 17th International Design Conference, 23-26.05.2022, Cavtat, Croatia, Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/pds.2022.191CrossRefGoogle Scholar
Gräßler, I. and Yang, X. (2016), “Interdisciplinary Development of Production Systems Using Systems Engineering”, Procedia CIRP, Vol. 50, pp. 653658. http://dx.doi.org/10.1016/j.procir.2016.05.008CrossRefGoogle Scholar
Hamraz, B., Caldwell, N., Wynn, D. and Clarkson, P. (2013), “Requirements-based development of an improved engineering change management method”, Journal of Engineering Design, Vol. 24 No. 11, pp. 765793. http://dx.doi.org/10.1080/09544828.2013.834039CrossRefGoogle Scholar
Ilieva, M.G. and Ormandjieva, O. (2005), “Automatic Transition of Natural Language Software Requirements Specification into Formal Presentation”, Springer, Berlin, Heidelberg, pp. 392397. https://doi.org/10.1007/11428817_45CrossRefGoogle Scholar
Joppich, R., Pflüger, A., Queins, S., Rupp, C., Schöne, K., Stuy, A. and Vöge, A. (2016), “Schablonen für alle Fälle”, 3rd ed., SOPHIST GmbH.Google Scholar
Jurafsky, D. and Martin, J.H. (2021), Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition, Prentice-Hall International, NJ, London.Google Scholar
Kashmira, P. G. T. H. and Sumathipala, S. (2018), “Generating Entity Relationship Diagram from Requirement Specification based on NLP”, 3rd International Conference on Information Technology Research (ICITR). http://dx.doi.org/10.1109/ICITR.2018.8736146CrossRefGoogle Scholar
Koscinski, V., Gambardella, C., Gerstner, E., Zappavigna, M., Cassetti, J. and Mirakhorli, M. (2021), “A Natural Language Processing Technique for Formalization of Systems Requirement Specifications”, 29th IEEE International Requirements Engineering Conference workshops, IEEE, Piscataway, NJ, pp. 350356. https://doi.org/10.1109/REW53955.2021.00062CrossRefGoogle Scholar
Machi, L.A. and McEvoy, B.T. (2012), The literature review: Six steps to success, 2. ed., Corwin.Google Scholar
Meth, H., Mueller, B. and Maedche, A. (2015), “Designing a Requirement Mining System”, Journal of the Association for Information Systems, Vol. 16 No. 9, pp. 799837. http://dx.doi.org/10.17705/1jais.00408CrossRefGoogle Scholar
Mich, L., Franch, M. and Inverardi, P. N. (2004), “Market research for requirements analysis using linguistic tools”, Requirements Engineering, Vol. 9 No. 1, pp. 4056. https://doi.org/10.1007/s00766-003-0179-8CrossRefGoogle Scholar
Neill, C.J. and Laplante, P.A. (2003), “Requirements engineering: The state of the practice”, IEEE Software, Vol. 20 No. 6, pp. 4045. http://dx.doi.org/10.1109/MS.2003.1241365CrossRefGoogle Scholar
Sang, E. F. Tjong, K. and de Meulder, F. (2003), “Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition”, Proceedings of CoNLL. https://doi.org/10.48550/arXiv.cs/0306050CrossRefGoogle Scholar
Ulrich, H. (1982), “Anwendungsorientierte Wissenschaft”, Die Unternehmung, Vol. 36, pp. 110.Google Scholar
Wang, X., Jiang, Y., Bach, N., Wang, T., Huang, Z., Huang, F. and Tu, K. (2021), “Automated Concatenation of Embeddings for Structured Prediction”, Association for Computational Linguistics, USA, pp. 26432660. https://doi.org/10.48550/arXiv.2010.05006CrossRefGoogle Scholar
Wilson, W.M., Rosenberg, L.H. and Hyatt, L.E. (1997), “Automated analysis of requirement specifications”, ICSE 97: 19th Annual Conference on Software Engineering, Boston, Massachusetts, United States, Association for Computing Machinery, New York, pp. 161171. https://doi.org/10.1145/253228.253258CrossRefGoogle Scholar
Young, R. E., Greef, A., and O'Grady, P. (1991), “SPARK: an artificial intelligence constraint network system for concurrent engineering”, Artificial intelligence in design ´91, Butterworth-Heinemann, pp. 7994. https://doi.org/10.1016/B978-0-7506-1188-6.50008-9CrossRefGoogle Scholar
Zhu, Q. and Luo, J. (2023), “Generative Design Ideation: A Natural Language Generation Approach”, Design Computing and Cognition’22, Springer International Publishing, pp. 3950. https://doi.org/10.48550/arXiv.2204.09658CrossRefGoogle Scholar