Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T05:35:59.312Z Has data issue: false hasContentIssue false

EXTENDED TARGET WEIGHING APPROACH (ETWA): IMPACT AND RISK ANALYSIS OF LIGHTWEIGHT CONCEPTS IN THE PRODUCT-PRODUCTION SYSTEM-CO-DESIGN

Published online by Cambridge University Press:  27 July 2021

Albert Albers*
Affiliation:
Karlsruhe Institute of Technology (KIT);
Tobias Stürmlinger
Affiliation:
Karlsruhe Institute of Technology (KIT);
Sven Revfi
Affiliation:
Karlsruhe Institute of Technology (KIT);
Kamran Behdinan
Affiliation:
University of Toronto - Department of Mechanical … Industrial Engineering, Canada
*
Albers, Albert, Karlsruhe Institute of Technology (KIT), IPEK Institute of Product Engineering, Germany, albert.albers@kit.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lightweight design in interconnected systems becomes more and more complex as the interdependencies cannot be overseen by the product developer. Varying one component might not only influence the interfaces to other components but also the underlying production systems.

Therefore, this contribution focuses on the product/production interdependencies and how they can be supported within lightweight design. Based on a functional description of the product it is possible to derive new lightweight design solutions and also to evaluate the change propagation in the production system. For this, a method for the impact and risk analysis is integrated in the lightweight design method Extended Target Weighing Approach (ETWA). By doing so, a risk value for the adapted production system can be calculated and different design concepts can be compared.

The application of the developed method on a simplified use-case shows great potentials when evaluating the impact of a newly developed lightweight design solution on an already existing production system supporting the product development in decision making.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Albers, A., Bursac, N. and Wintergerst, E. (2015), “Produktgenerationsentwicklung-Bedeutung und Herausforderungen aus einer entwicklungsmethodischen Perspektive”, Stuttgarter Symposium für Produktentwicklung.Google Scholar
Albers, A., Moeser, G. and Revfi, S. (2018), “Synergy Effects by using SysML Models for the Lightweight Design Method “Extended Target Weighing Approach””, in 28th CIRP Design Conference, Nantes, May 23-25, 2018, Vol. 70, , Amsterdam, pp. 434439.Google Scholar
Albers, A., Rapp, S., Fahl, J., Hirschter, T., Revfi, S., Schulz, M., Stürmlinger, T. and Spadinger, M. (2020a), “Proposing a generalized description of variations in different types of systems by the model of PGE - Product Generation Engineering”, Proceedings of the Design Society: DESIGN Conference, Vol. 1, pp. 22352244.CrossRefGoogle Scholar
Albers, A., Revfi, S., Kraus, F. and Spadinger, M. (2019), “Function-based benchmarking to identify competitor-based lightweight design potentials”, Procedia CIRP, Vol. 84, pp. 526531.CrossRefGoogle Scholar
Albers, A., Revfi, S. and Spadinger, M. (2017), “Extended Target Weighing Approach - Identification of Lightweight Design Potential for New Product Generations”, in Proceedings of the 21st International Conference on Engineering Design (ICED 17), Vancouver, August 21-25, 2017, Vol. 4: Design Methods and Tools, The Design Society, Glasgow, pp. 367376.Google Scholar
Albers, A., Revfi, S. and Spadinger, M. (2020b), “Funktionsbasierte Entwicklung leichter Produkte”, in Henning, F. and Moeller, E. (Eds.), Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung, 2., überarbeitete und erweiterte Auflage, Hanser, München, pp. 133152.CrossRefGoogle Scholar
Albers, A., Wagner, D., Ruckpaul, A., Hessenauer, B., Burkardt, N. and Matthiesen, S. (2013), “Target Weighing - A New Approach for Conceptual Lightweight Design in Early Phases of Complex Systems Development”, in Proceedings of the 19th International Conference on Engineering Design (ICED 13), Seoul, August 19-22, 2013, The Design Society, Glasgow, pp. 301310.Google Scholar
Clarkson, P.J., Simons, C. and Eckert, C. (2001), “Predicting Change Propagation in Complex Design”, Proceedings ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference.CrossRefGoogle Scholar
Eckert, C.M., Clarkson, P.J. and Zanker, W. (2004), “Change and customisation in complex engineering domains”, Research in Engineering Design, Vol. 15 No. 1, pp. 121.CrossRefGoogle Scholar
Feyerabend, F. (1991), Wertanalyse Gewicht: Methodische Gewichtsreduzierung - am Beispiel von Industrierobotern, VDI-Verlag.Google Scholar
Frankenberger, E., Badke-Schaub, P. and Birkhofer, H. (1998), Designers: The Key to Successful Product Development, Springer London, London.CrossRefGoogle Scholar
Gausemeier, J., Lanza, G. and Lindemann, U. (2012), Produkte und Produktionssysteme integrativ konzipieren: Modellbildung und Analyse in der frühen Phase der Produktentstehung, 1. Aufl., Carl Hanser Verlag GmbH & Co. KG.CrossRefGoogle Scholar
Kopp, G., Burkardt, N. and Majic, N. (2011), “Leichtbaustrategien und Bauweisen”, in Henning, F. and Moeller, E. (Eds.), Handbuch Leichtbau, Carl Hanser Verlag.Google Scholar
Laufer, F., Roth, D. and Binz, H. (2019), “Derivation of Criteria for Identifying Lightweight Potential – A Literature Review”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 26772686.Google Scholar
Lindemann, U. and Reichwald, R. (Eds.) (1998), Integriertes Änderungsmanagement, Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Mandel, C., Stürmlinger, T., Yue, C., Behrendt, M. and Albers, A. (2020), “Model-Based Systems Engineering Approaches for the integrated development of product and production systems in the context of Industry 4.0”, in IEEE (Ed.), SysCon 2020: 14th Annual IEEE International Systems Conference.CrossRefGoogle Scholar
Pimmler, T.U. and Eppinger, S.D. (1994), “Integration Analysis of Product decompositions”, Proceedings ASME International Design Engineering Technical Conferences.CrossRefGoogle Scholar
Ponn, J. and Lindemann, U. (2011), Konzeptentwicklung und Gestaltung technischer Produkte: Systematisch von Anforderungen zu Konzepten und Gestaltlösungen, VDI-Buch, 2. Aufl., Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Posner, B., Binz, H. and Roth, D. (2013), “Operationalisation of the Value Analysis for Design for Lightweight. The Function Mass Analysis”, in Proceedings of the 19th International Conference on Engineering Design (ICED 13), Seoul, August 19-22, 2013, The Design Society, Glasgow, pp. 271280.Google Scholar
Reinhart, G., Lindemann, U. and Heinzl, J. (1996), Qualitätsmanagement: Ein Kurs für Studium und Praxis, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Steimer, C., Fischer, J., Cadet, M., Meissner, H., Aurich, J.C. and Stephan, N. (2016), “SysML-basierte Planung cybertronischer Produktionssysteme in frühen Entwicklungsphasen”, in Schulze, S.-O., Tschirner, C., Kaffenberger, R., Ackva, S., GfSE Gesellschaft für Systems Engineering e.V. and TdSE 25.-27.10.2016 (Eds.), Tag des Systems Engineering, München, Carl Hanser, pp. 365374.Google Scholar
Stürmlinger, T., Jost, D., Mandel, C., Behrendt, M. and Albers, A. (2020), “Impact and risk analysis in the integrated development of product and production system”, Procedia CIRP, Vol. 91, pp. 627633.CrossRefGoogle Scholar