Article contents
Extending the function failure modes taxonomy for intelligent systems with embedded AI components
Published online by Cambridge University Press: 16 May 2024
Abstract
Early consideration of failure modes in the feature development process is essential to identify and trace risks across the physical and embedded AI components of intelligent systems, to enhance the robustness of the feature delivery as well as trust in the AI. This paper introduces an extension of the AIAG/VDA function failure modes taxonomy, to facilitate the integrated analysis of complex intelligent systems with embedded AI. A case study of an autonomous driving feature is discussed as validation of the proposed taxonomy.
Keywords
- Type
- Artificial Intelligence and Data-Driven Design
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2024.
References
- 1
- Cited by