Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T23:38:01.020Z Has data issue: false hasContentIssue false

A generative toolkit to help raise industrial design students’ awareness of low metal recycling rates

Published online by Cambridge University Press:  16 May 2024

Konrad Schoch*
Affiliation:
University of Wuppertal, Germany Division Sustainable Production and Consumption, Wuppertal Institute for Climate, Environment and Energy, Germany
Fabian Hemmert
Affiliation:
University of Wuppertal, Germany
Christa Liedtke
Affiliation:
University of Wuppertal, Germany Division Sustainable Production and Consumption, Wuppertal Institute for Climate, Environment and Energy, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Education for Sustainable Development requires raising individuals' awareness of problems relevant to the environment. We designed a Generative Toolkit that supports industrial design students carrying out a Speculative Design task and through this process initiates greater problem awareness of low metal recycling rates. In this paper we give insights into the Toolkit's theoretical derivation and the design process. Findings from testing suggest that there are several opportunities for improvement, such as considering further content-related competencies in the Toolkit's design.

Type
Design Education
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Allwood, J.M. et al. (2011) ‘Material efficiency: A white paper’, Resources, Conservation and Recycling, 55(3), pp. 362381. Available at: https://doi.org/10.1016/j.resconrec.2010.11.002.CrossRefGoogle Scholar
Archer, B. (1979) ‘Design as a Discipline’, Design Studies, 1(1).CrossRefGoogle Scholar
Auger, J. (2013) ‘Speculative design: crafting the speculation’, Digital Creativity, 24(1). Available at: https://doi.org/10.1080/14626268.2013.767276.CrossRefGoogle Scholar
Ayres, R.U., Mendez, G.V. and Peiro, L.T. (2014) ‘Recycling Rare Metals’, in Worrell, E. and Reuter, M.A. (eds) Handbook of Recycling. State-of-the-art for Practitioners, Analysts, and Scientists. Waltham Oxford Amsterdam: Elsevier, pp. 2738.Google Scholar
Bleecker, J. (2009) Design Fiction. A short essay on design, science, fact and fiction. San Francisco: Near Future Laboratory.Google Scholar
Van Boeijen, A.G.C., Daalhuizen, J. and Zijlstra, J. (2020) Delft Design Guide: Perspectives, models, approaches, methods. BIS Publishers.Google Scholar
Bovea, M.D. and Pérez-Belis, V. (2018) ‘Identifying design guidelines to meet the circular economy principles: A case study on electric and electronic equipment’, Journal of Environmental Management, 228, pp. 483494. Available at: https://doi.org/10.1016/j.jenvman.2018.08.014.CrossRefGoogle ScholarPubMed
Brandt, E., Binder, T. and Sanders, E.B.-N. (2013) ‘Tools and techniques: Ways to engage telling, making and enacting’, in Simonsen, J. and Robertson, T. (eds) Routledge International Handbook of Participatory Design. New York: Routledge, pp. 145181.Google Scholar
Carrara, S. et al. (2023) Supply chain analysis and material demand forecast in strategic technologies and sectors in the EU – A foresight study. JRC Science for Policy Report. Luxembourg: European Commission.Google Scholar
Ceschin, F. and Gaziulusoy, I. (2016) ‘Evolution of design for sustainability: From product design to design for system innovations and transitions’, Design Studies, 47, pp. 118163. Available at: https://doi.org/10.1016/j.destud.2016.09.002.CrossRefGoogle Scholar
Ciacci, L. et al. (2015) ‘Lost by design’, Environ. Sci. Technol., 49, pp. 94439451. Available at: https://doi.org/10.1021/es505515z.CrossRefGoogle ScholarPubMed
Cross, N. (2006) Designerly Ways of Knowing. London: Springer.Google Scholar
Dewulf, J. et al. (2016) ‘Criticality on the international scene: Quo vadis?’, Resources Policy, 50, pp. 169176. Available at: https://doi.org/10.1016/j.resourpol.2016.09.008.CrossRefGoogle Scholar
Dong, F. (2020) ‘BUILDING THE HISTORY OF THE FUTURE: A TOOL FOR CULTURE-CENTRED DESIGN FOR THE SPECULATIVE FUTURE’, in DS 102: Proceedings of the DESIGN 2020 16th International Design Conference. DESIGN 2020 - 16th International Design Conference is online now, pp. 11890. Available at: https://doi.org/10.1017/dsd.2020.63.CrossRefGoogle Scholar
Dunne, A. and Raby, F. (2013) Speculative Everything. Design, Fiction, and Social Dreaming. Cambridge MA, London: MIT Press.Google Scholar
Dunne, A. and Raby, F. (2021) Design Noir. The Secret Life of Electronic Objects. London, New York, Dublin: Bloomsbury.CrossRefGoogle Scholar
European Commission (2020) Circular Economy Action Plan: For a cleaner and more competitive Europe. COM/2020/98 final. Brussels.Google Scholar
European Commission (2023) Study on the Critical Raw Materials for the EU 2023 - Final Report. Brussels: European Union.Google Scholar
Giljum, S. and Hinterberger, F. (2014) ‘The Limits of Resource Use and Their Economic and Policy Implications’, in Angrick, M., Burger, A., and Lehmann, H. (eds) Factor X. Policy, Strategies and Instruments for a Sustainable Resource Use. Dordrecht: Springer (Eco-Efficiency in Industry and Science, 29).Google Scholar
Graedel, T.E. (2011) ‘The Prospects for Urban Mining’, The Bridge, pp. 4350.Google Scholar
De Haan, G. and Kuckartz, U. (1996) Umweltbewusstsein. Denken und Handeln in Umweltkrisen. Opladen: Westdeutscher Verlag.Google Scholar
Hauschild, M.Z., Rosenbaum, R.K. and Olsen, S.I. (eds) (2018) Life Cycle Assessment: Theory and Practice. Cham: Springer International Publishing. Available at: https://doi.org/10.1007/978-3-319-56475-3.CrossRefGoogle Scholar
International Energy Agency (2023) Critical Minerals Market Review 2023. Paris: IEA Publications.Google Scholar
Karlsson, R. and Luttropp, C. (2006) ‘EcoDesign: what's happening? An overview of the subject area of EcoDesign and of the papers in this special issue’, Journal of Cleaner Production, 14(15), pp. 12911298. Available at: https://doi.org/10.1016/j.jclepro.2005.11.010.CrossRefGoogle Scholar
Kattwinkel, D., Song, Y.-W. and Bender, B. (2018) ‘ANALYSIS OF ECODESIGN AND SUSTAINABLE DESIGN IN HIGHER EDUCATION’, in DS 92: Proceedings of the DESIGN 2018 15th International Design Conference. DESIGN 2018 - 15th International Design Conference, pp. 24512460. Available at: https://doi.org/10.21278/idc.2018.0305.CrossRefGoogle Scholar
Lettenmeier, M. et al. (2009) Resource Productivity in 7 Steps; How to Develop Eco-Innovative Products and Services and Improve Their Material Footprint. Wuppertal: Wuppertal Institute for Climate, Environment and Energy.Google Scholar
Liedtke, C. et al. (2019) Transition Design Guide – Design für Nachhaltigkeit. Gestalten für das Heute und Morgen. Ein Guide für Gestaltung und Entwicklung in Unternehmen, Städten und Quartieren, Forschung und Lehre. 55. Wuppertal: Wuppertal Institut für Klima, Umwelt, Energie.Google Scholar
Liedtke, C. et al. (2014) ‘Resource Use in the Production and Consumption System—The MIPS Approach’, Resources, 3, pp. 544574. Available at: https://doi.org/10.3390/resources3030544.CrossRefGoogle Scholar
Lofthouse, V. (2006) ‘Ecodesign tools for designers: defining the requirements’, Journal of Cleaner Production, 14(15), pp. 13861395. Available at: https://doi.org/10.1016/j.jclepro.2005.11.013.CrossRefGoogle Scholar
Lofthouse, V.A. and Bhamra, T.A. (2000) ‘Ecodesign Integration: Putting the Co into Ecodesign’, in Scrivener, S.A.R., Ball, L.J., and Woodcock, A. (eds) Collaborative Design. London: Springer-Verlag, pp. 163171.CrossRefGoogle Scholar
Luttropp, C. and Lagerstedt, J. (2006) ‘EcoDesign and The Ten Golden Rules: generic advice for merging environmental aspects into product development’, Journal of Cleaner Production, 14(15), pp. 13961408. Available at: https://doi.org/10.1016/j.jclepro.2005.11.022.CrossRefGoogle Scholar
Moran, K. (2019) Usability Testing 101, Nielsen Norman Group. Available at: https://www.nngroup.com/articles/usability-testing-101/ (Accessed: 23 October 2023).Google Scholar
Van Oers, L. and Guinée, J. (2016) ‘The Abiotic Depletion Potential: Background, Updates, and Future’, Resources, 5(1), p. 16. Available at: https://doi.org/10.3390/resources5010016.CrossRefGoogle Scholar
Talens, Peiro, L. et al. (2018) Towards Recycling Indicators based on EU flows and Raw Materials System Analysis data. EUR 29435 EN. Luxembourg: European Union.Google Scholar
Potting, J. et al. (2017) Circular Economy: Measuring Innovation in the Product Chain. The Hague: PBL Netherlands Environmental Assessment Agency.Google Scholar
Reuter, M., Schaik, A. and Ballester, M. (2018) ‘Limits of the Circular Economy: Fairphone Modular Design Pushing the Limits’, World of Metallurgy - ERZMETALL, 71, pp. 6879.Google Scholar
Rieckmann, M. (2012) ‘Future-oriented higher education: Which key competencies should be fostered through university teaching and learning?’, Futures, 44(2), pp. 127135. Available at: https://doi.org/10.1016/j.futures.2011.09.005.CrossRefGoogle Scholar
Rossi, M., Germani, M. and Zamagni, A. (2016) ‘Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies’, Journal of Cleaner Production, 129, pp. 361373. Available at: https://doi.org/10.1016/j.jclepro.2016.04.051.CrossRefGoogle Scholar
Sanders, E.B.-N. (2000) ‘Generative Tools for Co-designing’, in Scrivener, S.A.R., Ball, L.J., and Woodcock, A. (eds) Collaborative Design. London: Springer-Verlag, pp. 312.CrossRefGoogle Scholar
Sanders, E.B.-N. and Stappers, P.J. (2008) ‘Co-creation and the new landscapes of design’, CoDesign, 4(1), pp. 518. Available at: https://doi.org/10.1080/15710880701875068.CrossRefGoogle Scholar
Sanders, E.B.-N. and Stappers, P.J. (2014) ‘Probes, toolkits and prototypes: three approaches to making in codesigning’, CoDesign, 10(1), pp. 514. Available at: https://doi.org/10.1080/15710882.2014.888183.CrossRefGoogle Scholar
Schahn, J. and Matthies, E. (2008) ‘Moral, Umweltbewusstsein und umweltbewusstes Handeln’, in Lantermann, E.-D. and Linneweber, V. (eds) Grundlagen, Paradigmen und Methoden der Umweltpsychologie. Göttingen, Bern, Toronto, Seattle: Hogrefe Verlag, pp. 663689.Google Scholar
Van Schaik, A. and Reuter, M.A. (2014) Product Centric Simulation Based Design for Recycling (DfR) and Design for Resource Efficiency (DfRE). 10 Fundamental Rules & General Guidelines for Design for Recycling & Resource Efficiency. The Netherlands: NVMP/Wecycle.Google Scholar
Schneidewind, U. (2018) Die Große Transformation. Edited by K. Wiegandt and H. Welzer. Frankfurt am Main: FISCHER Taschenbucg.Google Scholar
Schön, D.A. (1983) The Reflective Practitioner. How Professionals Think in Action. New York: Basic Books.Google Scholar
Schwartz, S.H. and Howard (1981) ‘A Normative Decision-Making Model of Altruism’, in Rushton, J.P. and Sorrentino, R.M. (eds) Altruism and Helping Behavior. Hillsdale: Erlbaum, pp. 189211.Google Scholar
Solzbacher, C. (2006) ‘Förderung von Lernkompetenz in der Schule – Empirische Befunde als Beiträge zur Schul- und Unterrichtsentwicklung’, in Hinz, R. and Schumacher, B. (eds) Auf den Anfang kommt es an: Kompetenzen entwickeln - Kompetenzen stärken. 1st edn. Wiesbaden: VS Verlag für Sozialwissenschaften, pp. 1532.CrossRefGoogle Scholar
UBA (n.d.) Ecodesign Kit. Available at: https://www.ecodesignkit.de (Accessed: 20 October 2023).Google Scholar
UN (1992) Agenda 21. Rio de Janeiro.Google Scholar
UNEP (2013) Metal Recycling: Opportunities, Limits, Infrastructure. A Report of the Working Group on the Global Metal Flows to the International Resource Panel. Nairobi: United Nations Environment Programme.Google Scholar
Watkins, M. et al. (2021) ‘Sustainable Product Design Education: Current Practice’, She Ji: The Journal of Design, Economics, and Innovation, 7(4), pp. 611637. Available at: https://doi.org/10.1016/j.sheji.2021.11.003.Google Scholar
Whalen, K.A. et al. (2018) ‘“All they do is win”: Lessons learned from use of a serious game for Circular Economy education’, Resources, Conservation and Recycling, 135, pp. 335345. Available at: https://doi.org/10.1016/j.resconrec.2017.06.021.CrossRefGoogle Scholar
Wiek, A., Withycombe, L. and Redman, C.L. (2011) ‘Key competencies in sustainability: a reference framework for academic program development’, Sustainability Science, 6(2), pp. 203218. Available at: https://doi.org/10.1007/s11625-011-0132-6.CrossRefGoogle Scholar
Zhang, C., Yan, J. and You, F. (2023) ‘Critical metal requirement for clean energy transition: A quantitative review on the case of transportation electrification’, Advances in Applied Energy, 9, p. 100116. Available at: https://doi.org/10.1016/j.adapen.2022.100116.CrossRefGoogle Scholar